摘要
针对目前显著性检测算法在复杂多目标遥感图像中检测能力不足的问题,提出一种结合显著性检测和超像素分割的遥感信息提取算法。该算法通过GBVS(graph-based visual saliency)方法检测出原始影像中部分显著性较高的区域,然后利用SLIC(simple linear iterative clustering)方法分割显著区域,并修正显著区域边缘得到训练样本数据,进一步对训练样本进行统计学习,构造显著目标提取的阈值区间,最后实现对整幅超像素图像的显著目标提取。实验结果表明,该算法具有较高的准确率和召回率,能更加有效地检测出遥感图像中的显著目标,比目前主流的显著区域检测算法提取效果更好,可以很好地应用于具有明显显著区域的复杂多目标遥感图像信息提取中。
Due to the weakness of complex multi-target detection using some saliency detection algorithms in remote sensing images,this paper proposed an extraction algorithm based on saliency detection and superpixel segmentation. Firstly,it used graph-based visual saliency( GBVS) method to extract some high saliency regions correctly,then applied simple linear iterative clustering( SLIC) method to segment these saliency regions into some superpixels,and meanwhile amended part of the edge superpixels,and as the training sample. Secondly,by computing the statistical feature parameters of the training sample and constructing a reasonable statistic,it established a saliency objects extraction threshold range. Finally,it used the threshold range to extract the salient objects from the whole superpixels successfully. Compared with other saliency regions detection methods,experimental results show that the proposed algorithm has more higher precision and recall values and can detect the saliency objects more efficient,and can be better applied to extract remote sensing saliency information from the complex multitarget remote sensing images.
作者
闫琦
李慧
荆林海
唐韵玮
丁海峰
Yan Qi;Li Hui;Jing Linhai;Tang Yunwei;Ding Haifeng(Key Laboratory of Digital Earth Science,Institute of Remote Sensing & Digital Earth,Chinese Academy of Sciences,Beijing 100094,China;University of Chinese Academy of Sciences,Beijing 100049,China)
出处
《计算机应用研究》
CSCD
北大核心
2018年第7期2207-2210,2218,共5页
Application Research of Computers
基金
国家"863"计划资助项目(2015AA7026087)
高分辨率对地观测系统重大专项(民用部分)资助项目(30-Y20A37-9003-15/17)
中国地质调查局项目(12120113089200)
国家科技支撑计划资助项目(2015BAB05B05-02)
中国科学院遥感与数字地球研究所所长青年基金项目(Y6SJ1100CX)
国家自然科学基金资助项目(41501489)
关键词
遥感信息提取
GBVS显著性检测
SLIC超像素分割
训练样本
统计学习
extraction of remote sensing information
GBVS saliency detection
SLIC superpixel segmentation
training sample
statistical learning