摘要
根据中央空调各个设备的历史状态和耗电量等数据,建立基于神经网络的数学模型,并用粒子群优化算法对模型进行求解,得到模型输出变量数值的平均误差为1.65,还得到优化设备转速和设备状态两种情况的系统效率分别提高5.56%和10.87%。研究结果对中央空调系统节能具有实际的指导意义。
Based on the historical status and power consumption data of the air conditioning system, we establish a mathematical model based on the neural network, and use the particle swarm optimization algorithm to solve the model. The average numerical error of the output variables of the model is 1.65. The system efficiency was increased 5.56% and 10.87% respectively under the conditions of optimizing equipment and equipment state.This paper has practical implications for the research on energy conservation of the central air conditioning system.
作者
官金兰
赖煜庭
林子豪
欧杰泉
GUAN Jin-lan;LAI Yu-ting;LIN Zi-hao;OU Jie-quan(Department of Basic Guangdong AIB Polytechnic College,Guangzhou 510507,China;Department of E-commerce,Guangzhou Light Industry Vocational School,Guangzhou 510650,China)
出处
《佛山科学技术学院学报(自然科学版)》
CAS
2018年第3期19-24,共6页
Journal of Foshan University(Natural Science Edition)
基金
广东省大学生攀登计划培育项目(pdjh2017b0658)
广东农工商职业技术学院优秀青年学者项目(xykt1701)
关键词
神经网络
粒子群优化算法
节能
neural network
particle swarm optimization algorithm
energy conservation