期刊文献+

基于改进自适应粒子滤波的无线传感网船舶追踪 被引量:1

Ship tracking of wireless sensor network based on improved adaptive particle filter
下载PDF
导出
摘要 针对无线传感网(wireless sensor network,WSN)节点在海上动态环境下利用接收信号强度指示器(recieved signal strength indicator,RSSI)对船舶追踪精度不高以及计算量大等问题,提出改进的自适应粒子滤波算法。该算法采用优化边界阈值的方式,在重采样阶段采用KL散度(KullbackLeibler divergence,KLD)采样方法实现自适应选择采样粒子,这使得节点采样的计算量减少,从而缩短采样的计算时间。仿真结果表明:该算法可在保障追踪精度的同时,提高自适应度,减少节点计算量,并且能很好地适应海上环境。 Aiming at the issue that the accuracy of ship tracking is not high and the computational complexity is high based on wireless sensor network (WSN) whose nodes use the received signal strength indicator (RSSI) in the dynamic marine environment, an improved adaptive particle filter algorithm is proposed. In the algorithm, the method of optimizing boundary threshold is used, and the Kullback-Leibler divergence (KLD) resampling method is used at the resampling stage to select sampling particles adaptively, which reduces the computational complexity of node sampling and thus shortens the computing time of sampling. The simulation results show that the proposed algorithm can improve the self-adaptability, reduce the computational amount of nodes, and adapt to the marine environment well while keeping the tracking accuracy.
作者 梅骁峻 吴华锋 陈彦臻 蒋恩青 MEI Xiaojun;WU Huafeng;CHEN Yanzhen;JIANG Enqing(Merchant Marine College,Shanghai Maritime University,Shanghai 201306,China)
出处 《上海海事大学学报》 北大核心 2018年第2期12-16,共5页 Journal of Shanghai Maritime University
基金 国家自然科学基金(51579143) 上海海事大学研究生创新基金(2017ycx030)
关键词 船舶追踪 自适应粒子滤波 无线传感网(WSN) KL散度 ship tracking adaptive particle filter wireless sensor network (WSN ) Kullback-Leibler divergence
  • 相关文献

参考文献6

二级参考文献51

共引文献27

同被引文献2

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部