期刊文献+

基于属性关联的朴素贝叶斯分类算法 被引量:14

Naive Bayesian Classification Algorithm Based on Attribute Association
下载PDF
导出
摘要 针对传统朴素贝叶斯分类算法处理多维连续型数据时准确率较低的问题,提出基于属性关联的改进算法。通过高斯分割对属性类别不同的多维连续型数据集进行离散化处理,并使用拉普拉斯校准、属性关联和属性加权方法改进朴素贝叶斯分类过程。实验结果表明,与基于拉普拉斯校准或属性加权的改进算法相比,该算法能够提高分类准确率,且提升幅度在一定范围内随着属性数量的增加而增加,适用于多维连续型数据的分类。 Aiming at the problem that the accuracy of the multi-dimensional continuous data is too low for traditional naive Bayesian classification algorithm,an improved classification algorithm based on attribute association is proposed.Directed against the multidimensional continuous data set with different attribute classes,it discretizes the data set by Gaussian segmentation,which is improved by using Laplace calibration,attribute association and weighted attribute.Experimental results show that,compared with improved algorithms by Laplace calibration or attribute weighting,the proposed algorithm can improve the accuracy of classification results,and its amplitude increase is increased with the increase of the number of attributes in a certain range,which is suitable for the classification of multidimensional continuous data.
作者 宁可 孙同晶 赵浩强 NING Ke 1,SUN Tongjing 1,ZHAO Haoqiang 2(1.College of Automation,Hangzhou Dianzi University,Hangzhou 310018,China;2.Zhejiang Electronic Information Products Testing Institute,Hangzhou 310007,Chin)
出处 《计算机工程》 CAS CSCD 北大核心 2018年第6期18-23,共6页 Computer Engineering
基金 浙江省信息安全重点实验室基金(KYZ066816004)
关键词 连续型数据 数据分类 关联规则 朴素贝叶斯分类算法 属性加权 continuous data data classification association rule naive Bayesian classification algorithm attribute weighting
  • 相关文献

参考文献10

二级参考文献83

  • 1谈恒贵,王文杰,李游华.数据挖掘分类算法综述[J].微型机与应用,2005,24(2):4-6. 被引量:31
  • 2班桦,吴耿锋,吴绍春.分布式数据挖掘中间层[J].计算机工程与设计,2006,27(4):661-663. 被引量:3
  • 3程克非,张聪.基于特征加权的朴素贝叶斯分类器[J].计算机仿真,2006,23(10):92-94. 被引量:40
  • 4邓维斌,王国胤,王燕.基于Rough Set的加权朴素贝叶斯分类算法[J].计算机科学,2007,34(2):204-206. 被引量:43
  • 5刘红岩.可扩展的快速分类算法的研究与实现[M].北京:清华大学出版社,2000..
  • 6Sarwar B,Karypis G,Konstan J,Reidl J.Item-based collaborative filtering recommendation algorithms//Proceedings of the 10th International Conference on World Wide Web.Hong Kong,China,2001:285-295.
  • 7Deshpande M,Karypis G.Item-based top-n recommendation algorithms.ACM Transactions on Information Systems,2004,22(1):143-177.
  • 8Bell R M,Koren Y.Improved neighborhood-based collaborative filtering//Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.California,2007:7-14.
  • 9Koren Y.Factor in the Neighbors:Scalable and accurate collaborative filtering.ACM Transactions on Knowledge Discovery from Data,2009,4(1):1-24.
  • 10Kurucz M,Benczúr A A,Csalogny K.Methods for large scale SVD with missing values//KDD Cup Workshop at Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.California,2007:31-38.

共引文献544

同被引文献135

引证文献14

二级引证文献80

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部