摘要
对词语相似度、义原相似度和概念相似度进行研究,结合How-net义原树,提出一种计算义原相似度的算法。考虑义原节点所处的深度、义原节点间的距离以及义原节点兄弟数目,在义原相似度基础上,给出词语语义相似度算法。实验结果表明,与评论的倾向性算法和语义相似度算法相比,该算法在不增加算法复杂度的情况下,提高了词语语义相似度准确性。
On the study of lexical similarity,sememe similarity and concept similarity,this paper propose a sememe similarity computation algorithm based on the How-net semantic tree.This algorithm considers the node distance,the node depth and the number of brother node,so that gives out a lexical semantic similarity algorithm based on sememe similarity.Experimental results show that this algorithm can increase the accuracy of word semantic similarity and do not increase the complexity of algorithm compared with the tendency algorithm and semantics similarity algorithm in literature.
作者
马永起
韩德培
蒙立荣
余杰
程铮
MA Yongqi 1,HAN Depei 2,MENG Lirong 1,YU Jie 3,CHENG Zheng 1(1.Institute of Computer Application,Chinese Academy of Engineering Physics,Mianyang,Sichuan 621999,China;2.Eastern Communications Co., Ltd.,Hangzhou 310000,China;3.School of Computer,National University of Defense Technology,Changsha 410073,Chin)
出处
《计算机工程》
CAS
CSCD
北大核心
2018年第6期151-155,共5页
Computer Engineering
关键词
相似度
路径长度
概念相似度
义原距离
特征结构
similarity
length of path
concept similarity
distance of sememe
feature structure