期刊文献+

加权截断p范数在运动目标检测中的应用 被引量:1

Application of Weighted Truncated p Norm in Motion Target Detection
下载PDF
导出
摘要 在基于稀疏低秩分解的运动目标检测方法中,由于核范数并非为矩阵的秩函数最佳近似,未考虑到运动目标的空间连续性,在动态背景干扰的情况下,运动目标检测的效果不理想。针对上述问题,提出加权截断p范数分析模型。该模型将观测视频分为静态背景、运动目标与动态背景3个部分,静态背景采用改进的非凸范数,即加权截断p范数进行低秩约束,根据动态背景与运动目标具有空间连续性的特点,分别使用l_(2,1)范数进行结构性稀疏约束。实验结果表明,与鲁棒主成分分析模型、截断核范数模型、加权核范数模型以及相邻离群点低秩模型相比,该模型可有效去除动态背景扰动,并能提取到更精确的运动目标。 In the moving object detection methods base on low rank and sparse decomposition,the nuclear norm is not the best approximation of the rank function of the matrix,meanwhile,the spatial continuity of moving object is not to be considered.As a result,the effect of moving object detection isn’t ideal on the circumstance of dynamic interference.To deal with this problem,a model named weighted truncated p-norm model is proposed.This model divides the observed video into three parts:the static background、the moving object and the dynamic background.The static background is constrained by an improved non-convex norm——weighted truncated p-norm.And according to the characteristic of spatial continuity,the dynamic background and moving object are constrained by structured-sparse l2,1-norm,respectively.Experimental results show that the WTPR model can remove noise of dynamic background effectively,also the more accurate moving object can be obtained than Robust Principal Component Analysis(RPCA)、Truncated Nuclear Norm Regularization(TNNR)、Weighted Nuclear Norm Minimization(WNNM)、Detecting Contiguous Outliers in the Low-rank Representation(DECOLOR).
作者 宣晓 余勤 XUAN Xiao,YU Qin(School of Electrical and Information,Sichuan University,Chengdu 610065,Chin)
出处 《计算机工程》 CAS CSCD 北大核心 2018年第6期233-238,248,共7页 Computer Engineering
关键词 背景建模 运动目标提取 稀疏与低秩理论 加权截断p范数 结构性稀疏范数 background modeling moving target extraction sparse and low rank theory weighted truncated p norm structured-sparse norm
  • 相关文献

参考文献5

二级参考文献22

  • 1Isard M,Blake A.Condensation-conditional Density Propagation for Visual Tracking[J].Int.J.Computer Vision,1998,29(1):5-28.
  • 2Papenberg N.Highly Accurate Optic Flow Computation with Theoretically Justified Warping[J].International Journal of Computer Vision,2006,67(2):141-158.
  • 3Weickert J,Schnorr C.A Theoretical Framework for Convex Regularizers in PDE-based Computation of Image Motion[J].International Journal of Computer Vision,2001,45(3):245-264.
  • 4Weickert J.Anisotropic Diffusion in Image Processing[M].Stuttgart,Germany:Teubner-Verlog,1998.
  • 5Brox T,Bruhn A,Papenberg N,et al.High Accuracy Optic Flow Estimation Based on a Theory for Warping[C]//Proc.of the 8th European Conference on Computer Vision.Prague,Czech Republic:[s.n.],2004-05.
  • 6章毓晋.图像分割[M].北京:科学出版社,2001..
  • 7Kim J B, Kim H J.Efficient Region-based Motion Segmentation for a Video Monitoring System. Pattern Recognition Letters,2003, 24: 113
  • 8Coifman B, Begmer D. A Real-time Computer Vision System for Vehicle Tracking and Traffic Surveillance. Transportation Research Part C, 1998,(6): 276-288
  • 9Hu M K.Visual Pattern Recognition by Moment Invariant. IRE Trans.Information Theory, 1962,8:179-18
  • 10马义德,朱望飞,安世霞,邱会银,汤书森.改进的基于高斯混合模型的运动目标检测方法[J].计算机应用,2007,27(10):2544-2546. 被引量:39

共引文献36

同被引文献6

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部