期刊文献+

基于LSC图像分割的LBP立体匹配算法 被引量:3

LBP Stereo Matching Algorithm Based on LSC Image Segmentation
下载PDF
导出
摘要 在传统的全局立体匹配方法中,基于像素点的置信传播存在计算量大、单个像素点容易导致误差等缺点。为此,在图像分割处理方法的基础上,提出基于简单线性迭代聚类图像分割的循环置信度传播(LBP)立体匹配算法。运用LSC算法对图像进行分割,并利用一组平面模型进行建模,使每个分割区域至少对应一个视差平面标签。引入自适应匹配代价计算视差,获取可靠匹配像素点,通过最小二乘法平面拟合进行视差平面估计,并运用LBP算法优化视差平面标签。实验结果表明,与GC+occ、MultiCamGC等算法相比,该算法具有较高的匹配精度,能够处理低纹理区域和遮挡区域。 In the traditional global stereo matching methods,pixel-based belief propagation has a large amount of computation and a single pixel point can easily cause errors.Therefore,on the basis of the image segmentation processing methods,a Loopy Belief Propagation(LBP) stereo matching algorithm based on Simple Linear Iterative Clustering(SLIC) image segmentation is proposed.The image is segmented using the LSC algorithm and modeled using a set of plane models so that each segmentation region corresponds to at least one parallax plane label.The self-adapting matching cost calculation parallax is introduced to obtain reliable matching pixels,and the parallax plane estimation is performed by least squares plane fitting,and the LBP algorithm is used to optimize the parallax plane label.Experimental results show that compared with GC+occ,MultiGC and other algorithms,the algorithm has high matching accuracy and can handle low texture areas reas.
作者 杨艳 许道云 YANG Yan,XU Daoyun(School of Computer Science and Technology,Guizhou University,Guiyang 550025,Chin)
出处 《计算机工程》 CAS CSCD 北大核心 2018年第6期259-262,269,共5页 Computer Engineering
基金 国家自然科学基金(61762019 61262006 61462001) 贵州大学研究生创新基金(2017080)
关键词 立体匹配 简单线性迭代聚类 自适应匹配代价 平面拟合 循环置信度传播 stereo matching Simple Linear Iterative Clustering(SLIC) self-adapting matching cost plane fitting Loopy Belief Propagation(LBP)
  • 相关文献

参考文献9

二级参考文献65

  • 1徐青,王敬东,李鹏,李洪海.基于图像分割的快速立体匹配算法[J].计算机工程,2006,32(22):209-211. 被引量:6
  • 2马颂德,张正友.计算机视觉[M].科学出版社.1997.
  • 3汪海洋,潘德炉,夏德深.二维Otsu自适应阈值选取算法的快速实现[J].自动化学报,2007,33(9):968-971. 被引量:135
  • 4SCHARSTEIN D. SZEI.ISKI R. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms EJ~. International Journal of Computer Vision, 2002,,17 ( 1 ) : 7-42.
  • 5PHAM C, JEON J. Domain transformation-basedefficient cost aggregation for local stereo matching [J]. IEEE, 2012,23(7): 1119-1130.
  • 6TATSUNORI T. Graph cut based continuous stere- o matching using locally shared labels E C~. 111 CVPR , 2014.
  • 7HIRSCHMULLER H, SCHARSTEIN D. Evalua- ti(~n of stereo matching costs on images with radio- melric differences [J]. IEEE, 2009, 31 (9): 1582 1599.
  • 8SUN X, MEI X, JIAO S, et al.. Stereo matching with reliable disparity propagation [C]. InProc: 3DIMPVT, 2011 : 132-139.
  • 9HOSNI A, I:~LEYER M, GEI.AUTZ M. Secrets of a- daptive support weight techniques {or local stereo matc- hing[C]. In('VIU, 2013,117(6): 620-632.
  • 10PAl. C J, WEINMAN J J, TRAN L C, et al. ()n learning conditional random fields for stereo Exploring model structures and approximate infer ence EJ~. International Journal of Computer Vi ~ion, 2012, 99(3)=319-337.

共引文献50

同被引文献14

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部