期刊文献+

拉伸指数模型DWI鉴别诊断乳腺良恶性病变 被引量:1

Stretched-exponential model of DWI in differentiating malignant and benign breast lesions
下载PDF
导出
摘要 目的探讨拉伸指数模型DWI鉴别诊断乳腺良恶性病变的价值。方法收集58例乳腺病变患者,共63个病灶(良性33个,恶性30个),行多b值DWI及动态增强MRI(DCE-MRI)扫描。计算ADC、扩散分布指数(DDC)和扩散异质性指数(α)值,并生成时间-信号强度曲线(TIC)。比较良恶性病变间各参数差异,采用ROC曲线评价各参数诊断效能。结果恶性病变ADC、DDC和α分别为(1.01±0.19)×10^(-3) mm^2/s、(0.89±0.23)×10^(-3) mm^2/s和0.75±0.09,良性病变分别为(1.41±0.27)×10^(-3) mm^2/s、(1.49±0.29)×10^(-3) mm^2/s和0.87±0.07,恶性病变均低于良性病变(P均<0.01)。各参数中DDC曲线下面积(AUC)最大(AUC=0.958),最佳诊断界值1.22×10^(-3) mm^2/s,敏感度和特异度分别为96.67%、81.82%,DDC与TIC联合所得AUC为0.976,对应敏感度和特异度分别为93.33%、93.94%。结论拉伸指数模型DWI参数DDC、α能够鉴别诊断乳腺良恶性病变,DDC与TIC联合的诊断效能高于ADC和DCE。 Objective To investigate the value of stretched-exponential model of DWI in differential diagnosis of benign and malignant breast lesions.Methods Totally 58 patients with 63 breast lesions(33 benign,30 malignant lesions)were enrolled.All the patients underwent multiple-b-value DWI and dynamic contrast enhancement MRI(DCE-MRI)scans.The values of ADC,DDC and water molecular diffusion heterogeneity index(α)were calculated,and the time-signal intensity curve(TIC)was obtained.All the parameters were compared between benign and malignant breast lesions.The diagnostic performance of different parameters was evaluated with ROC curve.Results ADC,DDC andαvalue of malignant lesions was(1.01±0.19)×10-3 mm2/s,(0.89±0.23)×10-3 mm2/s and 0.75±0.09,while of benign lesions was(1.41±0.27)×10-3 mm2/s,(1.49±0.29)×10-3 mm2/s and 0.87±0.07,respectively.All 3 parameters in malignant lesions were lower than those in benign lesions(all P〈0.01).Taking 1.22×10-3 mm2/s as the optimal threshold,the area under the curve(AUC)of DDC was the largest as 0.958,and the corresponding diagnostic sensitivity and specificity was 96.67% and 81.82%,respectively.AUC value was 0.976 by combining DDC with TIC,and the corresponding diagnostic sensitivity and specificity was 93.33% and 93.94%,respectively.Conclusion The stretchedexponential model DWI can differentiate breast lesions,and diagnostic performance of combination of DDC and TIC is better than ADC or DCE.
作者 韩娜娜 张文斌 张志杰 杜帅 HAN Nana;ZHANG Wenbin;ZHANG Zhijie;DU Shuai(Department of MRI,People's Hospital of Xinzhou,Xinzhou 034000,China)
出处 《中国医学影像技术》 CSCD 北大核心 2018年第6期869-873,共5页 Chinese Journal of Medical Imaging Technology
关键词 乳腺肿瘤 拉伸指数模型 扩散磁共振成像 动态对比增强 Breast neoplasms Stretched-exponential model Diffusion magnetic resonance imaging Dynamic contrast-enhanced
  • 相关文献

参考文献2

二级参考文献21

  • 1刘溢,谢敬霞,韩鸿宾,杨渝平,刘淳.磁共振扩散加权成像在乳腺肿瘤的初步应用[J].中国医学影像技术,2003,19(5):548-551. 被引量:38
  • 2赵斌,蔡世峰,高佩虹,彭洪娟.MR扩散加权成像鉴别乳腺良恶性病变的研究[J].中华放射学杂志,2005,39(5):497-500. 被引量:146
  • 3庄晓明,张冰,朱斌,谢敏,樊祥山,孟凡青.磁共振T2~*W首过灌注成像在乳腺肿瘤诊断中的应用[J].中国癌症杂志,2006,16(10):851-854. 被引量:7
  • 4Kvistad KA, Rydland J, Vainio J, et al. Breast lesions: evaluation with dynamic contrast-en hanced Tl-weighted MR imaging and with T2"- weighted first-pass perfusion MR imaging. Radiology, 2000, 216(2): 545-553.
  • 5Kuhl CK, Schnall MD, Orel SG, et al. Correlation of lesion appearance and histologic findings for the nodes of a breast MR imaging interpretation mode. Radiographics, 1999, 19(1): 79-92.
  • 6Geimaerdt M J, Hogendoom PC, Bolero JL, et al. Cartilaginous tumors fast contrast-enhancemented MR imaging. Radiology, 2000, 214(2): 539-546.
  • 7Sinhu S, Sinha U. Functional magnetic resonance of human breast tumors diffusion and perfusion imaging. Ann N Y Acad Sci, 2002, 980(1): 95-115.
  • 8Tozaki M, Fukuda K. High-spatial-resolution MRI of non-masslike breast lesions: interpretation model based on BI-RADS MRI descriptors. A JR Am J Roentgenol, 2006, 187(2): 330-337.
  • 9Kvistad KA, Lundgren S. Differentiating benign and malignant breast lesions with T2*- weighted first-pass perfusion imaging. Acta Radiol, 1999, 40(1): 45-51.
  • 10Zhang B, Zhu B, Li M, et al. Comparative utility of MRI perfusion with MSIDR and DWIBS for the characterization of breast tumors. Acta Radiol, 2012, 53(6): 607-614.

共引文献26

同被引文献8

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部