摘要
已有的文献证明了特征为0的域上有限维线性空间的互不包含的子空间的并集不是子空间.考虑这一结论的推广形式,如果一个特征为0的域上线性空间的子空间W包含在有限个子空间的并集中,那么,在这有限个子空间中一定存在一个子空间使得它包含W.对于特征为素数p的域上线性空间,这个结论仅对某些情况成立.并给出了相应的例子.
It was proved that the union of finitely many subspaces which do not contain each other is not a subspace over the field with characteristic 0.This paper consider a generalized case and proves that if a subspace W of a vector space over the field with characteristic 0 is contained in the finitely many subspaces then W must be contained in some subspaces.For a vector space over the field with characteristic p,this conclusion holds only for some particular cases.Some examples are given.
作者
董学东
张妍
DONG Xuedong,ZHANG Yan(1Department of Mathematics,Dalian University;2School of Mathematics,Liaoning Normal University, Dalian 116029, Chin)
出处
《辽宁师范大学学报(自然科学版)》
CAS
2018年第2期1-3,共3页
Journal of Liaoning Normal University:Natural Science Edition
基金
辽宁省教育厅科学技术研究项目(L2014490)
关键词
线性空间
子空间
域的特征
域
vector space
subspace
characteristic
field