期刊文献+

高光谱影像感兴趣区域提取的活动轮廓模型研究 被引量:2

Study on active contour model for extracting regions of interest from hyperspectral image
下载PDF
导出
摘要 提出一种基于活动轮廓模型的高光谱影像感兴趣区域(ROI)提取方法,首先根据地物像元的标准反射率建立标准光谱反射率向量;然后,通过计算其与待处理像元的光谱向量的相关系数,得到像元相关系数偏差矩阵;最后,构造一种基于该偏差矩阵的C-V活动轮廓模型,并利用有限差分法对该模型求解,来提取感兴趣区域的像元.该方法可实现对高光谱区域宏观大类的快速提取,为高光谱影像压缩等进一步的信息处理奠定了基础.仿真实验验证了所提出方法的有效性. In this paper,a method for extracting Region Of Interest(ROI)from hyperspectral image based on active contour model is proposed.Firstly,a standard mixing vector of spectral reflectivity of object of interest is established according to spectral reflectance vector of pure object pixel.Then,the pixel correlation coefficient deviation matrix is obtained by calculating the correlation coefficient between the spectral reflectivity standard mixing vector of the object of interest and the spectral vector of each pixel in the hyperspectral image to be processed.Finally,a C-V active contour model based on the deviation matrix is constructed,and the finite difference method is used to solve the model to extract the pixels of the region of interest.This method can quickly extract the macroscopically large class of hyperspectral region of interest.It lays a foundation for further information processing such as hyperspectral image compression.The effectiveness of the proposed method is verified by the simulation experiment.
作者 王相海 李业涛 解天 毕晓昀 宋传鸣 WANG Xianghai,LI Yetao,XIE Tian,BI Xiaoyun,SONG Chuanming(School of Computer and Information Technology,Liaoning Normal University, Dalian 116081, Chin)
出处 《辽宁师范大学学报(自然科学版)》 CAS 2018年第2期57-62,共6页 Journal of Liaoning Normal University:Natural Science Edition
基金 国家自然科学基金资助项目(41671439 61402214) 辽宁省高等学校教育厅创新团队支持计划项目(LT2017013)
关键词 高光谱影像 感兴趣区域 光谱反射率 偏差矩阵 C-V活动轮廓模型 hyperspectral image region of interest spectral reflectivity deviation matrix C- V active contour model
  • 相关文献

参考文献4

二级参考文献88

  • 1侯志强,韩崇昭.基于力场分析的主动轮廓模型[J].计算机学报,2004,27(6):743-749. 被引量:20
  • 2李培华,张田文.主动轮廓线模型(蛇模型)综述[J].软件学报,2000,11(6):751-757. 被引量:125
  • 3张继武,张道兵,史舒娟,孙立新,许朝晖.基于水平集方法的数字胸片图像分割[J].中国图象图形学报(A辑),2004,9(12):1459-1465. 被引量:9
  • 4肖鹏峰,冯学智.高分辨率遥感图像分割与信息提取[M].北京:科学出版社,2012.
  • 5Chang C I. Hyperspectral Data Exploitation: Theory and Appli. cations [ M ]. New York : Wiley-Interscience, 2007.
  • 6Vane G, Goetz A F H. Terrestrial imaging sperctrometry:curren status, future trends[ J]. Remote Sensing of Environment, 1993, 44 : 177-126.
  • 7Tarabalka Y, Benediktsson J A, Chanussot J, et al. Multipk spectral-spatial classifl cation approach for hyperspeetral data [ J ]. IEEE Transactions on Geoscience and Remote Sensing, 2010,48 ( 11 ) :4122-4132.
  • 8Muhammed H H. Unsupervised hyperspectral image segmentation using a new class of neuro-fuzzy systems based on weighted incre- mental neural networks [ C ]//Proceedings of the Applied Imagery Pattern Recognition Workshop. Washington DC: IEEE Computer Society. 2002 : 171-177.
  • 9Mercier G, Den'ode S, Lennon M. Hyperspectral image segmen- tation with Markov chain model [ C ]//Toulouse, France : The IEEE International Geoscience and Remote Sensing Symposium. 2003:3766-3768.
  • 10Mallinis G, Koutsias N, Theocharis J B, P et al. SVM-based fuzzy decision trees for classifi cation of high spatial resolution re- mote sensing images [J]. IEEE Transactions on Geoscience and Remote Sensing, 2012,50( 1 ) :149-169.

共引文献291

同被引文献6

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部