期刊文献+

利用全局转录调控工程提高菌株耐受性研究进展 被引量:1

Global Transcription Machinery Engineering to Improve Strain Tolerance
下载PDF
导出
摘要 微生物在不同环境胁迫下的耐受性对于生物燃料和生物化学品的高效生产有重要意义.目前广泛应用于提高微生物菌株耐受性的方法包括过表达的自身或外源与耐受性相关的基因、适应性进化、人工诱变或基因组改组等.近年来,人们试图通过全局转录工程调控蛋白直接或间接操纵转录调控网络,以提高微生物胁迫耐受性.本文就利用全局转录调控工程提高菌株耐受性的研究进展包括对提高乙醇耐受性、耐酸性、耐有机溶剂、氧化应激耐受性以及耐糖性进行综述,阐明利用全局转录调控工程提高微生物耐受性所具有的广阔前景. Microbial tolerance under different environmental stresses is important for the efficient production of biofuels and biochemicals.Methods widely used for strain tolerance improvement include overexpression of well-characterized native or exogenous resistantstructural genes,long-term adaptive evolution,artificial mutagenesisor genome shuffling combined with selection,and so on.In recent years,attempts have been made for direct or indirect manipulation of the transcriptional regulation network by engineering transcriptional regulatory proteins to enhance the microbial stress tolerance of industrial relevance.This paper summarized the advancement of the research to improve strain tolerance through global transcription machinery engineering,including studies to improve ethanol tolerance,acid resistance,resistance to organic solvents,oxidative stress tolerance and resistant to sugar.It showed that this methodology has great prospects for improving microbial stress tolerance.
作者 郭学武 张玉 陈叶福 肖冬光 GUO Xuewu;ZHANG Yu;CHEN Yefu;XIAO Dongguang(Key Laboratory of Industrial Fermentation Microbiology,Ministry of Education,Tianjin Key Laboratory of Industrial Microbiology,College of Biotechnology,Tianjin University of Science & Technology,Tianjin 300457,China)
出处 《天津科技大学学报》 CAS 2018年第3期1-8,共8页 Journal of Tianjin University of Science & Technology
基金 国家自然科学基金资助项目(21406168)
关键词 全局转录调控工程 乙醇耐受性 耐酸性 有机溶剂耐受性 氧化应激耐受性 耐糖性 global transcription machinery engineering ethanol tolerance acid tolerance solvent tolerance oxidative stress tolerance sugar tolerance
  • 相关文献

参考文献2

二级参考文献42

  • 1陈涛,陈洵,王靖宇,班睿,赵学明.DNA及基因组改组在代谢工程中的应用[J].化工学报,2004,55(11):1753-1758. 被引量:11
  • 2Alper H,Moxley J,Stephanopoulos G,et al.Engineering yeast transcription machinery for improved ethanol tolerance and production[J].Science,2006,314:1565-1568.
  • 3Alper H.Global transcription machinery engineering[P].PCT:WO 2007/O38564 A2.2007.
  • 4Bailey J E.Towards a science of metabolic engineering[J].Science,1991,252:1668-1674.
  • 5Stephanopoulos G,Vallino J J.Network rigidity and metabolic engineering in metabolite overproduction[J].Science,1991,252(5013):1675-1681.
  • 6Alper H,Miyaoku K,Stephanopoules G.Construction of lycopeneoverproducing E.coli strains by combining systematic and combinatorial gene knockout tergets[J].Nat Biotechnol,2005,23(5):612-616.
  • 7Alper H,Jin Y S,Stephanopoulos G,et al.Identifying gene targets for the metabolic engineering of lyeopene biosynthesis in Escherichia coli[J].Metab Eng,2005,7(3):155-164.
  • 8Alper H,Stephanopoules G.Global transcription machinery engineering:.A new approach for improving cellular phenotype[J].Metab Eng,2007,9:258-267.
  • 9Beltran A,Liu Y,Blancafort P,et al.Interrogating genomes with combinatorial artificial transcription factor libraries:Asking zinc finger questions[J].Assay Drug Dev Technol,2006,4:317-331.
  • 10Park K S,Jang Y S,Kim J S,et al.Phenotypic alteratian and target gene identification using combinatorial libraries of zinc finger proteins in prokaryotic cells[J].J Bacteriol,2005,187:5496-5499.

共引文献18

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部