期刊文献+

基于位置的社交网络中基于时空关系的超网络链接预测方法

Supernetwork link prediction method based on spatio-temporal relation in location-based social network
下载PDF
导出
摘要 针对基于位置的社交网络(LBSN)中因现有方法未能有效融合社会因素、位置因素以及时间因素的综合影响而导致链接预测准确度低的问题,提出了一种LBSN中基于时空关系的超网络链接预测方法。首先,针对LBSN中网络的异构性以及用户间的时空关系特性,将网络划分成"时空-用户-位置-类别"四层超网络,降低影响因素间的耦合性;其次,考虑到边权值对网络的影响,通过挖掘用户影响力、隐关联关系、用户偏好以及节点度信息,对子网的边权值进行定义和量化,构建四层加权超网络模型;最后,在加权超网络模型的基础上,定义超边及加权超边结构,挖掘用户之间的多元关联关系进行预测。实验结果表明,所提方法较基于同构和异构的链接预测方法在准确率、召回率、F1值以及AUC上具有一定的提升,其中AUC指标较基于异构的链接预测方法提升了4.69%。 The accuracy of link prediction in the existing methods for Location-Based Social Network(LBSN) is low due to the failure of integrating social factors, location factors and time factors effectively. In order to solve the problem, a supernetwork link prediction method based on spatio-temporal relation was proposed in LBSN. Firstly, aiming at the heterogeneity of network and the spatio-temporal relation among users in LBSN, the network was divided into four-layer supernetwork of "spatio-temporal-user-location-category" to reduce the coupling between the influencing factors. Secondly,considering the impact of edge weights on the network, the edge weights of subnets were defined and quantified by mining user influence, implicit association relationship, user preference and node degree information, and a four-layer weighted supernetwork model was built. Finally, on the basis of the weighted supernetwork model, the super edge as well as weighted super-edge structure were defined to mine the multivariate relationship among users for prediction. The experimental results show that, compared with the link prediction methods based on homogeneity and heterogeneity, the proposed method has a certain increase in accuracy, recall, F1-measure(F1) as well as Area Under the receiver operating characteristic Curve(AUC), and its AUC index is 4. 69% higher than that of the link prediction method based on heterogeneity.
作者 胡敏 陈元会 黄宏程 HU Min, CHEN Yuanhui, HUANG Hongcheng(School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, Chin)
出处 《计算机应用》 CSCD 北大核心 2018年第6期1682-1690,1697,共10页 journal of Computer Applications
基金 重庆市科委基础与前沿研究计划项目(cstc2014jcyjA40039)~~
关键词 链接预测 基于位置的社交网络 超网络 影响力 用户偏好 link prediction Location-Based Social Network (LBSN) supernetwork influence user preference
  • 相关文献

参考文献6

二级参考文献58

  • 1樊治平,孙永洪.知识共享研究综述[J].管理学报,2006,3(3):371-378. 被引量:121
  • 2胡汉辉,潘安成.组织知识转移与学习能力的系统研究[J].管理科学学报,2006,9(3):81-87. 被引量:93
  • 3王再进.国外科技评估的历史、现状及其启示[J].北京航空航天大学学报(社会科学版),2006,19(4):76-80. 被引量:21
  • 4Hey T, Tansley S, Tolle K M. The fourth paradigm: data-intensive sci- entific discovery. Microsoft Research, 2009.
  • 5Crandall D J, Backstrom L, Cosley D, Suri S, Huttenlocher D, Klein- berg J. Inferring social ties from geographic coincidences. Proceedings of the National Academy of Sciences, 2010, 107(52): 22436-22441.
  • 6Lanw H W, Lim E P, Pang H, Tan T T. Social network discovery by mining spatio-temporal events. Computational & Mathematical Orga- nization Theory, 2005, 11(2): 97-118.
  • 7Lauw H W, Lim E P, Pang H, Tan T T. Stevent: spatio-temporal event model for social network discovery. ACM Transactions on Information Systems (TOISi, 2010, 28(3): 15:1-15:32.
  • 8Milgram S. The experience of living in cities. Science, 1970, 167(3924): 1461-1468.
  • 9Li Q, Zheng Y, Xie X, Chen Y, Liu W, Ma W Y. Mining user similarity based on location history. In: Proceedings of the 16th ACM SIGSPA- TIAL International Conference on Advances in Geographic Informa- tion Systems. 2008, 34-44.
  • 10Christopher D, Manning P R, Sch ti tze H. Inlxoduction to Information Retrieval. Cambridge University Press, 2008.

共引文献88

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部