摘要
针对晴、阴、雾天环境下道路场景中运动目标提取问题,探讨基于特征量融合的天气类型判别算法,借助不同天气下的图像特征信息研究运动目标提取算法。基于不同天气下多种场景的视频图像序列,实验结果表明,获得的天气类型判别算法能较好地依据图像的历史信息判别天气的类别;目标提取结果表明,获得的目标提取算法能有效消除噪声,并且提取运动目标的效果较好。
To solve the problem of extracting moving object in road scene in sunny/cloudy/foggy weather,a weather type discrimination algorithm based on feature fusion was discussed. Under discussion,a moving object extraction algorithm was proposed by studying the multi-feature image information under different kinds of weather. The experimental results show that based on video-frequency image sequence with multiple scenes under different weather types,the weather-type discrimination algorithm can determine the weather types according to the historical information of an image on one hand. On the other hand,the moving object extraction algorithm can eliminate effectively the background noises of images and extract the moving target included in such images.
作者
康俊
张著洪
KANG Jun;ZHANG Zhuhong(College of Big Data and Information Engineering,Guizhou Unversity,Guiyang 550025,China)
出处
《贵州大学学报(自然科学版)》
2018年第3期91-96,共6页
Journal of Guizhou University:Natural Sciences
基金
国家自然科学基金项目资助(61563009)
贵州大学创新基金项目资助(研理工2017013)
关键词
特征融合
天气识别
图像处理
目标提取
feature fusion
weather recognition
image processing
object extraction