期刊文献+

垂直腔面发射激光器的温度特性研究

Study on temperature characteristics of vertical cavity surface emitting lasers
下载PDF
导出
摘要 为了研究垂直腔面发射激光器(VCSEL)输出的光功率与器件温度的关系,确定用户可正常使用网络的温度范围,采用输出光功率与工作电流关系(P-I)模型进行了理论分析及实验验证,并通过简化模型参量及引入电压与电流关系(U-I)特性曲线来优化模型。采用了Levenberg-Marquardt(LM)算法来实现模型参量的求解,对比20℃下的测量数据与拟合数据的相似度,预测得到不同温度下的P-I特性曲线数据。结果表明,在固定温度下,输出光功率随着驱动电流的增加先增后减;在固定的驱动电流下,输出光功率随着温度增加而减小;要保证用户正常上网,电机房里VCSEL激光器工作的环境温度最多不能高于31℃。 In order to study relationship between output power and device temperature of a vertical cavity surface emitting laser( VCSEL) and determine the temperature range at which the user can use the network normally,the relationshipmodel between output power and working current( P-I) was used to do theoretical analysis and experimental verification. Then the model was optimized by simplifying the parameters and introducing voltage-current( U-I) relationship curve. The model parameters were obtained by means of Levenberg-Marquardt( LM) algorithm. The P-I characteristic curve data at different temperatures were predicted by comparing the similarity between measured data and fitting data at 20℃. The results show that,at a fixed temperature,optical output power increasesat first and then decreaseswith the increaseof driving current. At the fixed driving current,optical output power decreaseswith the increaseof temperature. To ensure the normal Internet using,room temperature of VCSEL laserscan notbe higher than 31℃.
作者 戚向涛 顾亚平 张曼 方斯喆 OI Xiantao;GU Yaping;ZHANG Man;FANG Sizhe(University of Chinese Academy of Sciences,Beijing 100049,China;Institute of Acoustics,ences,Beijing 100049,China)
出处 《激光技术》 CAS CSCD 北大核心 2018年第4期457-461,共5页 Laser Technology
关键词 激光器 温度特性 输出光功率与工作电流关系(P-I) 垂直腔面发射激光器 LEVENBERG-MARQUARDT算法 lasers temperature characteristics relationship between output power and working current (P-I) vertical cavity surface emitting laser Levenberg-Marquardt algorithm
  • 相关文献

参考文献4

二级参考文献22

  • 1Chang-Hasnain C J 2000 IEEE Journal of Selected Topics in Quantum Electronics 6 978.
  • 2Michael C, Zhou Y, Chang-Hasnain C J 2007 Nature Photonics 1 119.
  • 3Andrew A, Mario P 2007 Nature Photonics 1 153.
  • 4Iga K 2000 IEEE Journal of Selected Topics in Quantum Electronics 6 1201.
  • 5Zhang W L, Pan W, Luo B, Li X F, Zou X H, Wang M Y 2008 Chin. Phys. B 17 1821.
  • 6Maute G M, Lambkin V, Slattery J D, Justice S A, Hegarty J P, Huyet S P, Corbett G 2008 IEEE Lasers and Electro-Optics Society ( LEOS ) Annual Meeting 9 498.
  • 7Guan B L, Guo X, Deng J, Qu H W, Lian P, Dong L M, Chen M, Shen G D 2006 Chin. Phys. 15 2959.
  • 8Guo X, Shen G D 2008 Chin. Phys. B 17 307.
  • 9Guan B L, Guo X, Liang T, Gu X L, Deng J, Guo J, Yang H, Lin Q M, Shen G D 2006 Journal of Applied Physics 100 113508.
  • 10Kyungwon A, Michael S F 1995 Phys. Rev. A 52 1691.

共引文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部