期刊文献+

基于微博的网络链路预测方法研究 被引量:1

下载PDF
导出
摘要 如今社会是信息化社会,网络是必不可少的,微博已经是生活的一部分了。很多时候我们被推荐,比如一些明星达人、热点新闻等信息。如何确定要推送的群体,我们来研究微博用户之间的关系。如何从已经有的信息比如已有的网络节点结构或者已有的用户属性信息,来预测未知链边呢?我们研究微博的用户关系,能更精确的确定用户关系之间的方向性。 Now the society is the information age . Network has become the necessity of life which affecting people's life. Nowadays, microblog becoming a part of life. Many times we are recommended, such as celebrity blog and hot news. How do you determine the group to push information ? Maybe the study of relationship between microblog users can help me. How can we predict the unknown chain edge from the existing information such as the existing network node structure or the existing user attribute information? Based on the link prediction of the undirected network, determine the direction of the user relationship more accurately.
作者 廉颖 LIAN Ying
机构地区 山西工商学院
出处 《信息技术与信息化》 2018年第6期169-171,共3页 Information Technology and Informatization
关键词 复杂网络 微博 链路预测 complex network microblog link prediction
  • 相关文献

参考文献3

二级参考文献114

  • 1[2010 -03 -08]. http://t, sina. com. cn.
  • 2Semiocast , Twitter reaches half a billion accounts more than 140 million in the U. S [EB/OL]. (2012-07-30)[2013-07- 23]. http://semiocast. com/publications/2012_07 _30_ Twitter_ reaches_halCa_billion_accounts_140m_in_the_ US.
  • 3Kwak H, Lee C, Park H, et al. What is Twitter, A social network or a news media [C] //Proc of the 19th Int Conf on World Wide Web (WWW·10). New York: ACM, 2010: 591-600.
  • 4Comscore. Mobile driving majority of growth for leading EU5 social networks [EB/OLJ. (2012-05-18) [2013-07- 23]. http://www.comscoredatamine.com/2012/05/mobile_ driving , majority _ f _ growth _ for _ leading _ eu5 _ social _ networks.
  • 5Sakaki T, Okazaki M, Matsuo Y. Earthquake shakes Twitter users: Real-time event detection by social sensors [C] //Proc of the 19th Int Conf on World Wide Web (WWW·10). New York: ACM, 2010: 851-860.
  • 6Popescu A M. Pennacchiotti M. Detecting controversial events from Twitter [C] !!Proc of the 19th ACM Int Conf on Information and Knowledge Management (CIKM·10). New York: ACM. 2010: 1873-1876.
  • 7Weng J. Lee B S. Event detection in Twitter [C] //Proc of the 5th Int AAAI Conf on Weblogs and Social Media (ICWSM'l1). Menlo Park. CA: AAAI. 2011: 401-408.
  • 8Becker H, Naaman M, Gravano L. Beyond trending topics: Real-world event identification on Twitter [C] //Proc of the 5th Int AAAI Conf on Weblogs and Social Media (lCWSM'l1). Menlo Park. CA: AAAI. 2011: 438-441.
  • 9Ritter A, Mausam B. Etzioni O. et al. Open domain event extraction from Twitter [C] //Proc of the 18th ACM SIGKDD Int Conf on Knowledge Discovery and Data Mining (KDD'12). New York: ACM. 2012: 1104-1112.
  • 10Lin J, Snow R, Morgan W. Smoothing techniques for adaptive online language models: Topic tracking in Tweet streams [C] //Proc of the 17th ACM SIGKDD Int Conf on Knowledge Discovery and Data Mining (KDD'll). New York: ACM, 2011: 422-429.

共引文献167

同被引文献13

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部