期刊文献+

金属氧化物作为锂离子电容器负极的研究进展 被引量:2

Research progress of metal oxides as anode materials for lithium ion capacitors
下载PDF
导出
摘要 锂离子电容器是一种介于超级电容器和锂离子电池之间的新型储能器件,具有高能量密度、高功率密度以及长循环寿命等优点,在电动汽车、轨道交通、智能电网、可移动电子设备等领域具有非常广泛的应用前景。金属氧化物具有脱/嵌锂能力优异,理论比容量普遍较高,而且自然资源丰富、环境友好的优点,是一类理想的锂离子电容器负极材料,但电子导电率不高,脱/嵌锂过程中不可逆体积畸变较大,影响了其商业化的应用。本文综述了金属氧化物负极材料的制备方法,并分析了其作为锂离子电容器负极材料的电化学性能与优缺点,最后展望了金属氧化物负极材料未来的发展方向。 As a new type of energy storage device,lithium-ion capacitor(LIC) combines the advantages of both supercapacitors and lithium-ion batteries,which can provide high energy density,high power density and stable cyclic life.LICs are considered a promising candidate for energy storage in the fields of electric vehicles,rail transit,smart grids,and mobile electronic devices,ushering in their great prospects.Due to the high theoretical specific capacity,naturally abundance and environmental friendliness,metal oxides are considered as ideal anode materials for LICs.However,the low electronic conductivity and huge irreversible volumetric distortion greatly restrict their potential application.In this review,the preparation methods of metal oxide anode materials are summarized,and their electrochemical performances,advantages and disadvantages for LICs are analyzed.Finally,the future development of metal oxide anode materials is also discussed.
作者 赵兴茹 安琪 马向东 刘金 吴志勇 刘文杰 张熊 ZHAO Xingru;AN Qi;MA Xiangdong;LIU Jin;WU Zhiyong;LIU Wenjie;ZHANG Xiong(School of Mechanical Electronic Information and Engineering,China University of Mining and Technology(Beijing),Beijing 100083,China;Institute of Electrical Engineering,Chinese Academy of Sciences,Beijing 100190,China;State Grid Hunan Power Supply Service Center,Changsha 410011,Hunan,China)
出处 《储能科学与技术》 CAS CSCD 2018年第4期555-564,共10页 Energy Storage Science and Technology
基金 国家自然科学基金项目(51677182)
关键词 锂离子电容器 金属氧化物 负极 能量密度 lithium-ion capacitors metal oxides anode materials energy density
  • 相关文献

参考文献4

二级参考文献73

  • 1Burke A. J. Power Sources,2000,91:37.
  • 2Frackowiak E,Beguin F. Carbon,2001,39:937.
  • 3Winter M,Brodd R J. Chem. Rev. ,2004,104:4245.
  • 4Simon P,Gogotsi Y. Nat. Mater. ,2008,7:845.
  • 5Zhang L L,Zhao X S. Chem. Soe. Rev. ,2009,38:2520.
  • 6Iijima S. Nature, 1991,354 : 56.
  • 7Niu C,Sichel E K, Hoch R et al. Appl. Phys. Lett. , 1997,70 : 1480.
  • 8Zhang H, Cao G, Yang Y. Energ. Environ. Sci. , 2009,2 : 932.
  • 9Nnvoselov K S, Geim A K, Morozov S V et al. Science, 2004, 306:666.
  • 10Park S,Ruoff R S. Nat. Nanotechnol. ,2009,4:217.

共引文献40

同被引文献29

引证文献2

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部