期刊文献+

动力型超级电容器漏液模式下的性能研究 被引量:3

Research on the performance of electrolyte leakage power-based supercapacitor
下载PDF
导出
摘要 高能量密度和高功率密度的动力型超级电容器因其突出的性能优势成为了新型储能与节能应用市场的重点发展方向。在模拟单体漏液的工况条件下,本工作以商品化动力型超级电容器为实验对象,对比分析了漏液前后单体表面及电化学性能的差异,比较了高温加速寿命测试过程单体的性能变化。结果表明,漏液后电解液将以银白色晶体形式呈现,漏液量达12 g以上后,单体容量、内阻值将急剧衰减,当漏液量达28.5 g后,单体容量将下降12.1%,内阻增大31.3%。高温加速寿命测试过程漏液单体(Cap-4)泄压频次增多,容量衰减38.4%、内阻上升85.1%。 With the excellent energy density and power density,power-based supercapacitor has been regarded as the most important devices for energy storage and saving system.After simulated the electrolyte leakage situation,using the commercial power-based supercapacitor as the target,the comparison between leakage and no-leakage electrolyte cells have been analyzed,and its high temperature accelerated life test also been discussed.It shows that silver crystal appears,and once the leakage amount is more than 12 g,cell's capacitance and ESR will decrease dramatically.When the amount is over 28.5 g,cell's capacitance and ESR will drop off near 12.1% and 31.3%,respectively.The accelerated life test(Cap-4) also revealed that the over leakage cell will represent more gas release times,and its capacitance will decrease 38.4% and ESR reaches 85.1%.
作者 杨斌 丁升 傅冠生 王成扬 阮殿波 刘秋香 YANG Bin;DING Sheng;FU Guansheng;WANG Chengyang;RUAN Dianbo;LIU Qiuxiang(School of Chemical Engineering &Technology,Tianjin University,Tianjin 300072,China;Institute of Supercapacitor,Ningbo CRRC New Energy Technology Co.Ltd,Ningbo 315112,Zhejiang,China)
出处 《储能科学与技术》 CAS CSCD 2018年第4期661-666,共6页 Energy Storage Science and Technology
关键词 超级电容器 漏液 失效模式 电化学特性 supercapacitor leakage failure mode electrochemical performance
  • 相关文献

参考文献5

二级参考文献31

  • 1高希宇,吕玉祥,杨平,闫新印.超级电容器恒流恒压充放电热特性的研究[J].功能材料与器件学报,2014,20(1):57-62. 被引量:4
  • 2唐西胜,齐智平.独立光伏系统中超级电容器蓄电池有源混合储能方案的研究[J].电工电能新技术,2006,25(3):37-41. 被引量:57
  • 3王晓峰,尤政,阮殿波.A Hybrid Metal Oxide Supercapacitor in Aqueous KOH Electrolyte[J].Chinese Journal of Chemistry,2006,24(9):1126-1132. 被引量:10
  • 4Choi N S, Chen Z H, Bruce P G, et al. Challenges facing lithium batteries and electrical double-layer capacitors. Angew Chem Int Ed, 2012, 51: 9994-10024.
  • 5Shukla A K, Banerjee A, Ravikumar M K. Electrochemical capacitors: Technical challenges and prognosis for future markets. Electrochimica Acta, 2012, 84: 165-173.
  • 6Brandt A, Balducci A. Theoretical and practical energy limitations of organic and ionic liquid-based electrolytes for high voltage electrochemical double layer capacitors. J Power Sources, 2014, 250: 343-351.
  • 7Wu Z, Huang X L, Wang Z L, et al. Electrostatic induced stretch growth of homogeneous b-Ni(OH)2 on graphene with enhanced high-rate cycling for supercapacitors. Sci Rep, 2014, 4, doi: 10.1038/srep03669.
  • 8Yan J, Wang Q, Fan Z J, et al. Recent Advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv Energy Mater, 2014, 4, doi: 10.1002/aenm.201300816.
  • 9Wang Y G, Xia Y Y. Recent progress in supercapacitors: From materials design to system construction. Adv Mater, 2013, 25: 5336-5342.
  • 10Pandolfo A G, Hollenkamp A F. Carbon properties and their role in supercapacitors. J Power Sources, 2006, 157: 11-27.

共引文献51

同被引文献18

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部