摘要
通过Hirota双线性方法,根据行列式和矩阵的性质,引入τ函数并应用它的性质,研究(2+1)维色散长波方程,给出其方程的高阶有理解.通过选取不同的自由参数,画图加以说明色散长波方程基础有理解的碰撞规律,并进行详细的动力学分析.
In this letter,the general high-order rational solutions of the (2+1)-dimensional dispersive long wave system is derived by the Hirota bilinear method.These solutions can be given in terms of Grammian determinants and the matrix elements have plain algebraic expressions.By setting the regulation of free parameters,the presentation of one order rational solution is demonstrated by the figures and density.
作者
翟文研
武晓晨
ZHAI Wenyan;WU Xiaochen(College of Mathematics,Physics and Information Engineering,Zhejiang Normal University,Jinhua 321004,China)
出处
《湖北民族学院学报(自然科学版)》
CAS
2018年第2期165-168,共4页
Journal of Hubei Minzu University(Natural Science Edition)
关键词
(2+1)维色散长波方程
有理解
双线性方法
(2+1)-dimensional dispersive long wave system
rational solutions
bilinear method