期刊文献+

等熵Chaplygin气体动力学系统三片常数的黎曼问题

Riemann Problem with Three Constant Initial States for Isentropic Chaplygin Gas Dynamic System
下载PDF
导出
摘要 本文研究等熵Chaplygin气体动力学方程组带有三片常数的黎曼问题。借助特征分析方法,在适当的广义Rankine-Hugoniot条件和熵条件下,得到狄拉克激波之间以及狄拉克激波与接触间断之间相互作用的结果,建立了5种不同的唯一的黎曼解结构。 This paper studies the Riemann problem of one-dimensional Chaplygin gas dynamics with three constant states as initial data. With the help of characteristic analysis, under suitable generalized Rankine-Hugoniot relation and entropy condition, five different structures of Riemann solutions are established uniquely, in which the interactions among delta shock wave and contact discontinuity are presented.
作者 周同 杜珍珍 杨汉春 ZHOU Tong;DU Zhenzhen;YANG Hanchun(Basic Teaching Department,Tongling Polytechnic,Tongling 244000,China;School of Mathematics and Statistics,Yunnan University,Kunming 650091,China)
出处 《安庆师范大学学报(自然科学版)》 2018年第2期40-44,51,共6页 Journal of Anqing Normal University(Natural Science Edition)
关键词 等熵Chaplygin气体动力学系统 黎曼问题 广义Rankine-Hugoniot条件 熵条件 狄拉克激波(δ-激波) isentropic Chaplygin gas dynamic system Riemann problem generalized Rankine-Hugoniot relation en-tropy condition Delta shock wave
  • 相关文献

参考文献2

二级参考文献16

  • 1扈志明,张同.Elementary Waves of Two-dimensional Steady Isentropic Flow[J].Tsinghua Science and Technology,1997,2(3):103-108. 被引量:2
  • 2Bouchut F. On zero-pressure gas dynamics [J]. Advances in kinetic theory and computing, Series on Advances in Mathematics for Applied Sciences, 1994,22:171-190.
  • 3Li Y, Cao Y. Large partial difference method with second accuracy in gas dynamics [J]. Scientific Sinica (A), 1985, 28:1024-1035.
  • 4Agarwal R K, Halt D W. A modified CUSP scheme in wave/particle split form for unstructured grid Euler flows, Frontiers of Computational Fluid Dynamics [M]. edited by D. A. Caughey and M. M. Hafes, John Wiley and Sons, 1994.
  • 5Yu W E, Rykov G, Sinai Ya G. Generalized variational principles, global weak solutions and behavior with random initial data for systems of conservation laws arising in adhesion particle dynamics [J]. Comm. Math. Phys., 1996, 177:349-380.
  • 6Shandarin S F, Zeldovich Ya B. The large-scale structure of the universe: Turbulence, intermittency, structure in a self-gravitating medium [J]. Rev. Mod. Phys., 1989, 61:185-220.
  • 7Sheng Wancheng, Zhang Tong. The Riemann problem for transportation equation in gas dynamics [J]. Mem.Amer.Math.Soc., 1999, 137(654).
  • 8Li Jiequan, Zhang Tong. Generalized rankine-hugoniot conditions of weighted dirac delta waves of transportation quation, in "Nonlinear PDE and Related Areas" [M]. Sngapore: World Scientific, 1998.
  • 9Li Jiequan, Yang Shuli, Zhang Tong. The two-dimensional Riemann problem in gas dynamics [M]. Longman Scientific and Technical, 1999.
  • 10Tan Dechun, Zhang Tong, Two dimensional riemann problem for a hyperbolic system of nonlinear conservation laws(Ⅰ)Four-J cases [J]. J. Differential Equations, 1994, 111:203-254.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部