摘要
针对三维模型的无监督聚类问题,目前广泛采用基于词袋的方法具有两大缺陷,既无法准确知道聚类的数目,也不能适用于结构复杂(比如呈流形结构)的形状空间.为此,本文采用两大方法加以改进,其一利用有流形聚类功能的决策图方法取代K-means,其二使用核函数更加有效地衡量三维形状之间的差异.在SHREC2010库和SHREC2011库上的大量实验结果表明,两种技巧的有机结合使聚类的精确度和效率得到了显著的提升.
In the unsupervised clustering problem of 3 D models, the Bag-of-Word based approach has been identified with two major drawbacks: being unable to predict exactly the number of clusters, and unable to apply to a complicated shape space(e.g., with a manifold structure). Therefore, we propose two improvement techniques in this paper. Firstly, the decision graph technique, with a super ability in manifold clustering, is used as a substitute for K-means. Secondly, the difference between shapes is calculated using a combined kernel function, rather than measured in the original signature space. Extensive experimental results on SHREC2010 and SHREC2011 show that the coherent combination of the couple of techniques greatly improves clustering accuracy and efficiency.
作者
徐欣
舒振宇
陈双敏
辛士庆
屠长河
XU Xin;SHU Zhen-yu;CHEN Shuang-min;XIN Shi-qing;TU Chang-he(Faculty of Electrical Engineering and Computer Science,Ningbo University,Ningbo 315211,China;School of Computer and Data Engineering,Ningbo Institute of Technology,Zhejiang University,Ningbo 315100,China;College of Computer Science and Technology,Shandong University,Jinan 250101,China)
出处
《宁波大学学报(理工版)》
CAS
2018年第4期46-51,共6页
Journal of Ningbo University:Natural Science and Engineering Edition
基金
国家自然科学基金(61772016
61332015)
浙江省自然科学基金(LY17F020018)
宁波市自然科学基金(2017A610115)
浙江大学国家重点实验室开放基金(A1702)
关键词
核函数
无监督聚类
三维模型
决策图
多特征融合
kernel function
unsupervised clustering
3D models
decision graph
fusing multiple features