期刊文献+

基于决策图的三维模型无监督聚类算法 被引量:2

Unsupervised clustering algorithm on 3D model library via decision graph
下载PDF
导出
摘要 针对三维模型的无监督聚类问题,目前广泛采用基于词袋的方法具有两大缺陷,既无法准确知道聚类的数目,也不能适用于结构复杂(比如呈流形结构)的形状空间.为此,本文采用两大方法加以改进,其一利用有流形聚类功能的决策图方法取代K-means,其二使用核函数更加有效地衡量三维形状之间的差异.在SHREC2010库和SHREC2011库上的大量实验结果表明,两种技巧的有机结合使聚类的精确度和效率得到了显著的提升. In the unsupervised clustering problem of 3 D models, the Bag-of-Word based approach has been identified with two major drawbacks: being unable to predict exactly the number of clusters, and unable to apply to a complicated shape space(e.g., with a manifold structure). Therefore, we propose two improvement techniques in this paper. Firstly, the decision graph technique, with a super ability in manifold clustering, is used as a substitute for K-means. Secondly, the difference between shapes is calculated using a combined kernel function, rather than measured in the original signature space. Extensive experimental results on SHREC2010 and SHREC2011 show that the coherent combination of the couple of techniques greatly improves clustering accuracy and efficiency.
作者 徐欣 舒振宇 陈双敏 辛士庆 屠长河 XU Xin;SHU Zhen-yu;CHEN Shuang-min;XIN Shi-qing;TU Chang-he(Faculty of Electrical Engineering and Computer Science,Ningbo University,Ningbo 315211,China;School of Computer and Data Engineering,Ningbo Institute of Technology,Zhejiang University,Ningbo 315100,China;College of Computer Science and Technology,Shandong University,Jinan 250101,China)
出处 《宁波大学学报(理工版)》 CAS 2018年第4期46-51,共6页 Journal of Ningbo University:Natural Science and Engineering Edition
基金 国家自然科学基金(61772016 61332015) 浙江省自然科学基金(LY17F020018) 宁波市自然科学基金(2017A610115) 浙江大学国家重点实验室开放基金(A1702)
关键词 核函数 无监督聚类 三维模型 决策图 多特征融合 kernel function unsupervised clustering 3D models decision graph fusing multiple features
  • 相关文献

参考文献5

二级参考文献35

  • 1刘小明,尹建伟,冯志林,董金祥.基于适应加权非对称AdaBoost HMM的三维模型分类算法[J].浙江大学学报(工学版),2006,40(8):1300-1305. 被引量:4
  • 2白静,刘玉生,高曙明.基于局部蔓延的多层次实体模型检索[J].计算机辅助设计与图形学学报,2007,19(4):480-485. 被引量:7
  • 3Jain K A.Data clustering:50 years beyond K-means[J].Pattern Recognition Letters,2010,31:651-666.
  • 4Bishop M C.Pattern recognition and machine learning [M].New York:Springer Press,2007.
  • 5Claeskens G,Hjort N L.Model selection and model averaging[M].New York:Cambridge University Press,2008.
  • 6Shahbaba B,Neal R.Nonlinear models using Dirichlet process mixtures[J].The Journal of Machine Learning Research,2009,10:1829-1850.
  • 7Fox E,Sudderth E,Jordan M,et al.Nonparametric Bayesian learning of switching linear dynamical systems [C].In Advances in Neural Information Processing Systems 21,Vancouver and Whistler,BC,Canada:The MIT Press,2008.
  • 8Sudderth E.Graphical models for visual object recognition and tracking[D].MA,Cambridge:Massa- chusetts Institute of Technology,2006.
  • 9Gershman S,Blei D.A tutorial on Bayesian nonpara- metric models[J].Journal of Mathematical Psychology,2012,56:1-12.
  • 10Hjort L N,Holmes M P,Walker G S.Bayesian nonparametric[M].New York:Cambridge University Press,2010.

共引文献27

同被引文献15

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部