摘要
近年来,随着关联成像技术的高速发展,已被广泛应用于诸多领域内,并引起了高度关注。偏振探测技术能够区分不同材质物体,可以增强系统的探测识别能力。文中结合偏振探测和关联成像技术的优点,利用Walsh-Hadamard散斑对场景进行照明,并对场景反射光进行分时偏振探测,实现了对场景的全Stokes偏振关联成像。搭建相应的实验系统对多材质物体进行了成像实验,利用不同偏振探测信号与照明散斑计算并获得了物体的Stokes参数图像,实现了对同一场景中的不同材质物体和相同材质不同结构物体的区分。通过演化压缩采样复原技术,在不同采样率下对物体图像进行了复原,结果表明:演化压缩采样复原技术能在较低的采样率下,复原出清晰的场景全偏振信息。
In recent years, with the rapid development of associated imaging technology, it has been widely applied in many fields and has attracted great attention. The polarization detection technology can distinguish different material objects and enhance the system ability of detecting and identifying. In this paper, with the advantages of polarization detection techniques and associated imaging techniques, the Walsh-Hadamard speckle was used to illuminate the scene, the scene reflection light was detected by time-sharing polarization, and the full Stokes polarization correlation imaging of the scene was realized.The corresponding experimental system was set up, and the imaging experiments of multi-material objects were carried out. Using the signals of different polarization states and illumination speckles, the Stokes parameters images of objects were obtained by calculating. The distinguish of different material objects and the objects with the same material and different structures in the same scene were realized. Through the evolutionary compression sampling recovery technology, the images were restored at different sampling ratios. The results show that the evolutionary compression sampling recovery technology can restore clear full polarization information at a lower sampling rate.
作者
张家民
时东锋
黄见
王英俭
Zhang Jiamin;Shi Dongfeng;Huang Jian;Wang Yingjian(Key Laboratory of Atmospheric Optics,Anhui Institute of Optics and Fine Mechanics,Chinese Academy of Sciences,Hefei 230031,China;School of Environmental Science and Optoelectronic Technology,University of Science andTechnology of China,Hefei 230026,China;Key Laboratory of Optical Engineering,Chinese Academy of Sciences Chengdu 610209,China)
出处
《红外与激光工程》
EI
CSCD
北大核心
2018年第6期140-147,共8页
Infrared and Laser Engineering
基金
国家自然科学基金(11404344
41505019)
中国科学院创新基金(CXJJ-17S029)
中国科学院光束控制重点实验室基金(2017LBC007)
关键词
关联成像
偏振探测
Stokes参数
压缩采样
correlated imaging
polarization detection
Stokes parameters
compressed sampling