摘要
多目标规划问题的解通常不是唯一的,而是一个最优解集合,因此问题具有不适定性。提出了一种求解多目标规划问题的基于精英策略的粒子群算法:该算法以群组为操作单元,以有效应对多目标规划问题的多解特征;外部存档的精英策略可以保证粒子的多样性,可以有效克服算法易陷入局部最优的缺陷。最后利用3个数值算例验证了算法的可行性和有效性。
The multi-objective programming problem is an ill-posed problem which optimization solution is not the only one,but an optimal solution set.In this paper,the particle swarm optimization algorithm based on an elitist strategy is proposed for the multi-objective programming problem.On the one hand,the proposed algorithm takes the group as the operating unit and it can effectively deal with the multi-solution features of the multi-objective programming problem.On the other hand,the elite strategy of external archiving can ensure the diversity of particles and it can effectively overcome the shortcomings of falling into local optimum.On the basis of the study,three numerical examples are used to illustrate the feasibility and effectiveness of the proposed algorithm.
作者
黄瑾
张涛
郭阳
胡玉蝶
Huang Jing;Zhang Tao;Guo Yang;Hu Yudie(Yangtze University,Jingzhou 43402)
出处
《长江大学学报(自然科学版)》
CAS
2018年第13期1-6,共6页
Journal of Yangtze University(Natural Science Edition)
基金
国家自然科学基金资助项目(61673006)
国家留学基金委资助出国留学项目(201708420111)
关键词
多目标优化
粒子群算法
PARETO最优解
精英集合
multi-objective optimization
particle swarm algorithm
Pareto optimal solution
elite set