期刊文献+

基于改进核模糊粗糙集的特征基因混合选择方法

A Hybrid Feature Gene Selection Algorithm Based on an Improved Kernelized Fuzzy Rough Sets
下载PDF
导出
摘要 针对基因表达谱高维、小样本、高冗余和高噪声等特点,提出了一种特征基因混合选择方法.采用Relief F方法对原始基因进行排序,过滤无效基因,获得初选基因子集,给出了基于差分进化算法优化的核模糊粗糙集模型,进行了特征基因终选.仿真实验结果表明:所提算法比Relief F、Kruskal Wallis、Gini Index等算法在分类精度和基因数量等方面有明显优势. A hybrid feature gene selection algorithm based on an improved kernelized fuzzy rough sets aiming at the characteristics of high dimensions,small samples,high noise and high redundancy of gene expression profiles is proposed.The top-ranked genes based on Relief F algorithm are selected to construct a primary gene subset in order to remove the invalid genes. An improved kernelized fuzzy rough sets model based on the differential evolution algorithm is proposed to achieve the selection of feature genes. Simulation results show that the proposed algorithm has obvious advantages comparison with Relief F,Kruskal Wallis and Gini index algorithm.
作者 陈涛 Chen Tao(School of Mathematics and Computer Science,Shanxi University of Technology,Hanzhong,72300)
出处 《中南民族大学学报(自然科学版)》 CAS 2018年第2期121-127,共7页 Journal of South-Central University for Nationalities:Natural Science Edition
基金 国家自然科学基金资助项目(11502132) 陕西省教育厅科研资助项目(16JK1149) 陕西理工大学科研资助项目(SLGQD2017-07)
关键词 基因表达谱 特征基因选择 ReliefF方法 核模糊粗糙集 差分进化算法 gene expression profile feature gene selection ReliefF algorithm kemelized fuzzy rough sets differential evolution
  • 相关文献

参考文献3

二级参考文献23

  • 1陈水利,李敬功,王向公.模糊集理论及其应用[M].北京:科学出版社,2006.
  • 2ZdziSland aWInforrnatiP" onRugh Sets[J]Sc "iences, 1982,1In lternatin: a1341-35urnal of Computer.
  • 3Zdzislaw P. Why Rough Sets? [A]//The Fifth IEEE Interna- tional Conference on Fuzzy Systems[C-]. Louisiana, New Or- leans: IEEE Press, 1996 : 738-743.
  • 4Richard J, Shen Qiang. Fuzzy-Rough Sets Assisted Attribute Se- lection[J]. IEEE Transactions on Fuzzy Systems, 2007, 15 ( 1 ) : 73-89.
  • 5Didier D, Henri P. Rough Fuzzy Sets and Fuzzy Rough Sets[J]. International Journal of General Systems, 1990, 17 (2/3): 191- 209.
  • 6Nehad M, Yakout M. Axiornatics for Fuzzy Rough Set[J]. Fuzzy Sets System, 1998,100(1-3) 327-342.
  • 7So Y D,Chen De-gang, Eric T C C, et al. On the Generalization of Fuzzy Rough Sets[J]. IEEE Transactions on Fuzzy System, 2005,13 : 343-361.
  • 8H u Qing-hua, Zhang Lei, Chen De-gang, et al. Gaussian Kernel based Fuzzy rough Sets: Model, Uncertainty Measures and Ap- plications[J]. International Journal of Approximate Reasoning, 2010,51 : 453-471.
  • 9Hu Qing-hua, Yu Da-ren, Pedrycz W, et al. Kernelized FuzzyRough Sets and Their Applicatlons[J]. IEEE Transactions on Knowledge and Data Engineering, 2011,23(11) : 1649-1667.
  • 10Hong T-P,Wang T-T,Wang S-L,et al. Learning a Coverage Set of Maximally General Fuzzy Rules by Rough Sets [J]. Expert Systems with Applications, 2000,19(2) 97-103.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部