期刊文献+

基于感兴趣区域和HOG-CTH特征的交通标志检测 被引量:3

Traffic Sign Detection Based on Regions of Interest and HOG-CTH Features
下载PDF
导出
摘要 提出了一种基于感兴趣区域和HOG-CTH融合特征的交通标志检测算法。首先在HSV彩色空间进行颜色阈值分割,然后对分割后的二值图像进行一系列形态学处理获得感兴趣区域,最后提取感兴趣区域的HOG-CTH融合特征,并采用支持向量机(Support Vector Machine,SVM)分类器进行交通标志训练与检测。在特征提取阶段首先分别提取图像的梯度方向直方图(Histogram of Oriented Gradient,HOG)特征和统计变换直方图(Census Transform Histogram,CENTRIST/CTH)特征,然后将CTH特征向量细量化,最后组合HOG特征和稀疏化的CTH特征。实验结果表明,该方法具有很好的鲁棒性,能够快速准确地检测出交通标志。 A traffic sign detection algorithm based on the regions of interest and Histogram of Oriented Gradient and CensusTransform Histogram is proposed. Firstly,the color threshold segmentation is performed in the HSV color space,then a series ofmorphological processing is performed on the segmented binary image to obtain the regions of interest,finally,the HOG-CTH fea-tures of the regions of interest are extracted,and the support vector machine(SVM)classifier is used to carry out traffic sign train-ing and detection.Firstly,the features of the Histogram of Oriented Gradient(HOG)and the Census Transform Histogram(CEN-TRIST/CTH)are extracted respectively in the stage of feature extraction. Then the CTH feature vector is refined.Finally,HOG andsparsed CTHfeatures are combined. The experimental results show that the method has good robustness and can detect the trafficsigns quickly and accurately.
作者 孙露霞 张尤赛 李永顺 张硕 SUN Luxia;ZHANG Yousai;LI Yongshun;ZHANG Shuo(School of Electronics and Information,Jiangsu University of Science and Technology,Zhenjiang 212003)
出处 《计算机与数字工程》 2018年第6期1222-1226,共5页 Computer & Digital Engineering
关键词 交通标志检测 感兴趣区域 方向梯度直方图 统计变换直方图 支持向量机 traffic sign detection regions of interest HOG CTH SVM
  • 相关文献

参考文献2

二级参考文献107

  • 1黄志勇,孙光民,李芳.基于RGB视觉模型的交通标志分割[J].微电子学与计算机,2004,21(10):147-148. 被引量:40
  • 2朱金好,罗晓萍.基于决策树型SVM的交通标志图像识别[J].长沙理工大学学报(自然科学版),2004,1(2):13-17. 被引量:5
  • 3朱双东,陆晓峰.道路交通标志识别的研究现状及展望[J].计算机工程与科学,2006,28(12):50-52. 被引量:30
  • 4Maldonado-Bascon S, Acevedo Rodrguez J, Lafuente Arroyo S, et al. An optimization on pictogram identification for the road-sign recognition task using SVMs[J]. Computer Vision and Image Understanding, 2010, 114(3): 373-383.
  • 5Ruta A, Li Y, Liu X. Real-time traffic sign recognition from video by class-specific discriminative features[J]. Pattern Recognition, 2010, 43(1): 416-430.
  • 6Belaroussi R, Foucher P, Tarel J, et al. Road sign detection in images: a case study[C]//Proceedings of Int. Conf. on Pattern Recognition(ICPR). Istanbul, Turkey:IEEE, 2010: 484-488.
  • 7Schlosser J, Montemerlo M, Salisbury K. Intelligent road sign detection using 3D scene geometry[C] //Proceedings of Int. Conf. on Intelligent Robots and Systems. Taipei, China: IEEE, 2010: 740-745.
  • 8Khan J, Bhuiyan S, Adhami R. Image segmentation and shape analysis for road-sign detection[J]. IEEE Transactions on Intelligent Transportation Systems, 2011, 12(1): 83-96.
  • 9Kastner R, Michalke T, Burbach T, et al. Attention-based tra- ffic sign recognition with an array of weak classifiers[C] //IEEE Intelligent Vehicles Symposium. San Diego, CA, USA: IEEE, 2010: 333-339.
  • 10Paclik P. Road sign recognition survey [EB/OL].(1999-05-16)[2012-08-01]. http://euler.fd.cvut.cz/research/rs2/files/skoda-rs-survey.html.

共引文献26

同被引文献27

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部