期刊文献+

关于截面体的凸性研究 被引量:1

Research on the Convexity of Intersection Bodies
下载PDF
导出
摘要 著名的Busemann定理表明一个对称凸体的截面体也是凸的.主要研究了Busemann定理对于一般的p-凸体是否也成立,证明了一个对称的p-凸体的截面体对于某些q而言一定是q-凸的;同时,推广了一个Busemann定理,并应用它得到了凸体的截面体的对偶Brunn-Minkowski不等式. The classical Busemann's theorem states that the intersection body of a symmetric convex body is also convex.A version of Busemann's theorem for general p-convex bodies is provided.It is shown that the intersection body of a symmetric p-convex body is surely q-convex for some fixed q.Meanwhile,a Busemann's theorem is generalized.As an important application,the dual Brunn-Minkowski inequality of the intersection bodies is achieved.
作者 魏超 Wei Chao(Wenzhou Vocational Technical College,Wenzhou 325035,China)
出处 《宁夏大学学报(自然科学版)》 CAS 2018年第2期111-114,共4页 Journal of Ningxia University(Natural Science Edition)
基金 温州职业技术学院科硕基金资助项目(WZY2017019) 国家自然科学基金资助项目(11171277)
关键词 Busemann定理 p-凸体 截面体 对偶Brunn-Minkowski不等式 Busemann's theorem p-convex bodies intersection bodies dual Brunn-Minkowski inequality
  • 相关文献

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部