期刊文献+

基于竞赛难度与能力提高的大学生竞赛定级方法 被引量:2

The Competition Ranking Method of College Students Based on the Difficulty of Competition and Ability Improvement
下载PDF
导出
摘要 基于竞赛难度与能力提高的大学生竞赛定级方法通过问卷调查量化学生对竞赛难度与竞赛后能力提高的感受,运用迭代协同过滤算推荐算法来预测每个学生对竞赛的打分,合成了竞赛难度与竞赛后能力提高.进而结合竞赛综合性以及竞赛影响力,得到竞赛的综合分数.最后,利用Kmeans算法对各种竞赛的得分数聚类,最终实现竞赛定级.力求在竞赛定级时体现公平性、后效性、引导性以及合理性. The competition ranking method based on the difficulty and ability improvement of the competition is built on surveying data about difficulty and ability improvement of the competition.Then,we reuses the collaborative filtering recommendation algorithm to predict the vacant survey data,and synthesize difficulty(and ability improvement)of the competition.Furthermore,the method gets the scores of competitions by considering the competition comprehensiveness and the competition influence as well.Finally,the competition is ranked by Kmeans clustering the scores of various competitions.The method considers the students feeling about the competition difficulties and the ability improvements after competition.It can reflect the fairness,guidance,after effect,and rationality of ranking method.
作者 陈星 王亚非 袁望舒 CHEN Xing;WANG Ya-fei;YUAN Wang-shu(Fundamental Department,Army Logistic University of PLA,Chongqing 401311,China;Military Installation Department,Army Logistic University of PLA,Chongqing 401311,China;Food Science and Engineering Department,College of chemical engineering,Tianjin University,Tianjing 300072,China)
出处 《大学数学》 2018年第3期40-45,共6页 College Mathematics
基金 重庆市高等教育学会高等教育科学研究课题项目(CQGJ15318) 重庆市重庆市高等教育教学改革研究项目(163202)
关键词 竞赛难度 竞赛定级 迭代 协同过滤算法 能力提高 Kmeans聚类 competition difficulty competition ranking iteration collaborative filtering recommendation algorithm ability improvement Kmeans clustering
  • 相关文献

参考文献7

二级参考文献46

  • 1韦玮.试析学科竞赛在高校学风建设中的作用[J].宁波大学学报(教育科学版),2005,27(3):86-88. 被引量:51
  • 2鲁保富.构建系统、高效的学科竞赛管理机制 促进高校学风建设[J].中国大学教学,2005(8):37-38. 被引量:60
  • 3闫舒静,张兴会,李辉,何文章,张永丹.“教学改革-科技创新-学科竞赛”互动模式的创建与实践[J].天津工程师范学院学报,2006,16(4):3-5. 被引量:40
  • 4SARWAR B, KARYPIS G, KONSTAN J, et al. Application of dimensionality reduction in recommender systems: a case study: proc. of the WebKDD Workshop at the ACM SIGKKD [ C]. New York: ACM ,2006,
  • 5SARWAR B, KARYPIS G, KONSTAN J, et al, Item-based collaborative filtering recommendation algorithms: proc. of the 10th International World Wide Web Conference[ C]. [ S. l. ] : [ s. n. ] ,2001:285- 295.
  • 6KARYPIS G, Evaluation of item-based top-n recommendation algorithms: proc. of the 10th International Conference on Information and Knowledge Management (CIKM) [ C]. Atlanta: [ s. n. ] ,2001.
  • 7BILLSUS D, PAZZANI M J. Learning collaborative information filters: proc. of the 15th International Conference on Machine Learning [C]. [S.l. ]:[s, n. ],1998:46-54.
  • 8CONNER M O, HERLOCKER J. Clustering items for collaborative filtering: proc. of the ACM SIGIR Workshop on Recommender Systems[ C], Berkeley: [s. n. ], 1999.
  • 9KOHRS A, MERIALDO B. Clustering for collaborative filtering applications: proc. of CIMCA' 99[ C], [ S. l. ] :IOS Press, 1999.
  • 10UNGAR L H,FOSTER D P. Clustering methods for collaborative illtering: proc. of Workshop on Recommendation Systems at the 15th National Conf. on Artificial Intelligence [ C ]. Menlo Park : AAAI Press, 1998.

共引文献398

同被引文献23

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部