摘要
Internal solitary waves have been found to disintegrate into a series of solitons over variablebathymetry, with important applications for offshore engineering. Considering realisticbackground stratification in the South China Sea, internal solitary waves propagating over a stepare studied here. By assuming disintegrated solitons propagate independently, a theoreticalmodel, namely a triangular temporal-distribution law based on the Korteweg–de Vries theory, isproposed to describe the fission process of internal solitary waves undergoing disintegration. Aparameter is then introduced to quantify the accuracy of the theoretical model. The resultsindicate that the triangular law predicts the fission process better for a longer travelling distanceand a larger amplitude of internal solitary waves.
Internal solitary waves have been found to disintegrate into a series of solitons over variablebathymetry, with important applications for offshore engineering. Considering realisticbackground stratification in the South China Sea, internal solitary waves propagating over a stepare studied here. By assuming disintegrated solitons propagate independently, a theoreticalmodel, namely a triangular temporal-distribution law based on the Korteweg–de Vries theory, isproposed to describe the fission process of internal solitary waves undergoing disintegration. Aparameter is then introduced to quantify the accuracy of the theoretical model. The resultsindicate that the triangular law predicts the fission process better for a longer travelling distanceand a larger amplitude of internal solitary waves.
基金
supported by the National Natural Science Foundation of China (11572332 and 11602274)
the National Key R&D Program of China (2017YFC1404202)
the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB22040203)