期刊文献+

多层概率决策的网络大数据协作融合算法 被引量:8

The network big data cooperative fusion algorithm based on multi layer probabilistic joint decision
下载PDF
导出
摘要 为了改善网络大数据传输效率及其精度,降低网络数据传输负荷,基于多层概率网络模型和联合决策研究了一种网络大数据协作融合算法。首先,以复杂异构多层网络的数据采集与缓存为对象,以实时感知数据及其准确处理为优化目标,设计了一种多层概率联合决策模型。接着,通过主层-分层和信号强度进行网络大数据的多维描述,结合3步分解和三性融合,以逆变换去噪为驱动,提出了网络大数据协作数据融合算法。最后,实验和仿真结果表明,与实验统计值相比,所提算法在数据融合精度和效率等方面具有明显优势。 In order to improve the efficiency and accuracy of network large data transmission and reduce the network data transmis-sion load, a network large data fusion algorithm based on multilayer probabilistic network model and joint decision making is stud-ied. Firstly, based on the data acquisition and caching of complex heterogeneous multi-layer networks, a multi-level probabilistic joint decision model is designed, which takes real-time sensing data and its accurate processing as the optimization objective.Then, through the main layer stratification and the signal strength of multidimensional network big data description, combined with the three step decomposition and three fusion, driven by transform denoising, the network data collaboration data fusion algorithm is proposed. Finally, the experimental and simulation results show that the proposed algorithm has obvious advantages in terms of data fusion accuracy and efficiency compared with experimental statistics.
作者 曾康铭 吴杏 Zeng Kangming;Wu Xing(College of Information Engineering,Nanning University,Nanning 530200,Chin)
出处 《电子技术应用》 2018年第6期133-137,共5页 Application of Electronic Technique
关键词 多层概率 联合决策 大数据 网络协作控制 数据融合 multi layer probability .joint decision big data network cooperation control data fusion
  • 相关文献

参考文献6

二级参考文献80

  • 1周涛,柏文洁,汪秉宏,刘之景,严钢.复杂网络研究概述[J].物理,2005,34(1):31-36. 被引量:240
  • 2赵明,汪秉宏,蒋品群,周涛.复杂网络上动力系统同步的研究进展[J].物理学进展,2005,25(3):273-295. 被引量:44
  • 3褚小立.化学计量学方法与分子光谱分析技术.北京:化学工业出版社 ,2011:260.
  • 4Wood T, Shenoy P, Venkataranmani A, et al. Black-box and Gray-box Strategies for Virtual Machine Migra- tionl C]//Proceedings of the 4th USENIX Symposium on Networked Systems Design & Implementation. [ S. 1. 3 :USENIX Association,2007:229-242.
  • 5Zhou Wenyu,Yang Shoubao,Fang Jun,et al. VMCTune:A Load Balancing Scheme for Virtual Machine Cluster Based on Dynamic Resource Allocation [ C l//Proceedings of the 9th International Conference on Grid and Cloud Computing. Washtington D. C. , USA: IEEE Press,2010 : 81-86.
  • 6Buyya R, Murshed M. GridSim: A Toolkit for the Modeling and Simulation of Distributed Resource Management and Scheduling for Grid Computing [ J I. Concurrency and Computation:Practice and Experience, 2002,14( 13-15 ) :1175-1220.
  • 7Greenberg A, Hamilton J R, Jain N, et al. VL2: A Scalable and Flexible Data Center Network E C 1// Proceedings of ACM SIGCOMM Conference on Com- munication Review. Chicago, USA : ACM Press, 2009 : 51-62.
  • 8Benson T, Akella A, Maltz D A. Network Traffic Characteristics of Data Centers in the Wild I C ]// Proceedings of ACM SIGCOMM Internet Measurement Conference. Melbourne, Australia: ACM Press, 2010: 267-280.
  • 9Meng Xiaoqiao, Vasileios P, Zhang Li. Improving the Scalability of Data Center Networks with Traffic-aware Virtual Machine Placement [ C ~//Proceedings of IEEE INFOCOM' 10. San Diego, USA: IEEE Press, 2010: 1154-1162.
  • 10Handigol N, Seetharaman S, Flajsiik M, et al. Plug-n- Server: Load-balancing Web Traffic Using Open- Flow~C]//Proceedings of ACM SIGCOMM' 09. Chicago, USA:ACM Press ,2009.

共引文献41

同被引文献94

引证文献8

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部