期刊文献+

脑电信号中眼电伪迹自动识别与去除方法研究 被引量:4

Research on recognizing and removing ocular artifact automatically from EEG signals
下载PDF
导出
摘要 传统盲源分离算法消除眼电伪迹须用到两个眼电信号作为参考,但在采集眼电信号时易给被试带来不适产生噪声,且识别时需要人为辨别,为了解决这些问题,提出一种基于FastICA的眼电伪迹自动去除方法。该方法先计算出FastICA提取出的各独立成分与GFP(Global Field Power)值的相关系数,再比较相关系数,将其绝对值最大所对应的独立成分识别为眼电伪迹独立成分,最后把该独立成分置零重构干净的脑电信号,实现眼电伪迹的自动去除。通过自采的30例脑电数据实验结果表明:该方法能完全自动地去除眼电伪迹成分并有效保留其他脑电成分,且快速准确,适用于实时场合。 In traditional blind source separation algorithms, they usually need two EOG signals as the references to eliminate EOG artifacts. However, when collecting the EOG signals, they will always easily make the subjects uncomfortable, and require manual identification. In order to solve these problems, a FastICA-based method is presented, which can automatically remove ocular artifacts. Firstly, the correlation coefficient between each independent component extracted by FastICA and GFP(Global Field Power)value is calculated. Secondly, compared with these correlation coefficients, the independent component that has the largest absolute value is identified as the independent component of the ocular artifact. Finally, the independent component is set zero to reconstruct the clean EEG signals so that the automatic removal of EOG artifacts is achieved. The 30 cases of experiment EEG data show that this method can quickly and precisely eliminate the ocular artifacts which is completely automatic, preserve the other EEG components, and can be applied in real-time occasions.
作者 李佳庆 李海芳 白一帆 阴桂梅 孙丽婷 LI Jiaqing;LI Haifang;BAI Yifan;YIN Guimei;SUN Liting(School of Computer Science and Technology,Taiyuan University of Technology,Taiyuan 030024,China;Department of Computer Science and Technology,Taiyuan Normal University,Jinzhong,Shanxi 030619,China)
出处 《计算机工程与应用》 CSCD 北大核心 2018年第13期148-152,167,共6页 Computer Engineering and Applications
基金 国家自然科学基金(No.61472270 No.61373101)
关键词 脑电信号 眼电伪迹 独立成分分析 自动去除 Electroencephalography (EEG) ocular artifact Independent Component Analysis (ICA) automatic removal
  • 相关文献

参考文献7

二级参考文献67

  • 1王明祥,宁宇蓉,王晋国.基于Mallat算法的一维离散小波变换的实现[J].西北大学学报(自然科学版),2006,36(3):364-368. 被引量:26
  • 2马颖颖,张泾周,吴疆.脑电信号处理方法[J].北京生物医学工程,2007,26(1):99-102. 被引量:12
  • 3Romero S, Mananas M A, Barbanoj M J. Ocular Reduction in EEG Signals Based on Adaptive Filtering, Regression and Blind Source Separation[J]. Annals of Biomedical Engineering, 2009, 37(1): 176-191.
  • 4Germez-Herrero G, De Clercq W, Anwar H, et al. Automatic Removal of Ocular Artifacts in the EEG Without an EOG Reference Channel[C]//Proc. of the 7th Nordic Signal Processing J Symposium. Reykjavik, Iceland: Is. n.], 2006: 130-133.
  • 5Joyce C A, Gorodnitsky I F, Kutas M. Automatic Removal of Eye Movement and Blink Artifacts from EEG Data Using Blind Component Separation[J]. Psychophysiology, 2004, 41(2): 313- 325.
  • 6Zhu Danhua, Tong Jijun, Chen Yuquan. An ICA-based Method for Automatic Eye Blink Artifact Correction in Multi-channel EEG[C]//Proc. of the 5th International Conference on Technology and Applications in Biomedicine. Shenzhen, China: [s. n.], 2008: 338-341.
  • 7Li Yandong, Ma Zhongwei, Lu Wenkai, et al. Automatic Removal of the Eye Blink Artifact from EEG Using an ICA-based Template Matching Approach[J]. Physiological Measurement, 2006, 27(4): 425-436.
  • 8Richman J S, Moorman J R. Physiological Time-series Analysis Using Approximate Entropy and Sample Entropy[J]. American Journal of Physiology-heart and Circulator Physiology, 2000,278(6): 2039-2049.
  • 9Romo-Vazquez R, Ranta R, Louis-Dorr R, et al. EEG Ocular Artefacts and Noise Removal[C]//Proc. of the 29th Annual International Conference of the IEEE EMBS. Lyon, France: [s. n.], 2007: 5445-5448.
  • 10KEAI SELVA VIJILAL C, KANAGASABAPATHY P, JOHNSON S, et al. Artifacts removal in EEG signal using adaptive neuro fuzzy inference system [C] // Inter- national Conference on Signal Processing, Communica- tions and Networking. Chennai, India: IEEE, 2007: 589 - 591.

共引文献44

同被引文献34

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部