期刊文献+

基于信息内容和用户关系的用户兴趣分类

Classifying interests of users based on information content and user relationship
下载PDF
导出
摘要 从微博的内容属性和社交网络的信息传播规律特征出发,将微博文本与用户关注关系结合作为用户兴趣分类的标准,从而使提取的用户兴趣的更加准确、有效。借助建立的用户兴趣分类模型解决用户兴趣分类问题,选取新浪微博作为研究对象,应用LDA算法进行主题提取,应用LibSVM算法进行分类。实验证明,该方法分类时增加了对用户信息的全面性应用,而且与其他方法相比有更高的分类准确率。 Based on the content attributes of Weibo and the characteristics of the information dissemination law of social network,the paper combines the Weibo text with the user's follower relationship as the standard of user interest classification,so that the user's interest is more accurate and effective.Using the established user interest classification model to solve the problem of user interest classification,the paper chooses Sina Weibo as the research object,in which the main topic extraction algorithm is LDA,classification algorithm is LIBSVM.The experimental results show that the method can be used to classify the user information comprehensively and has higher classification accuracy than other methods.
作者 吴峰 范通让 贾红佳 崔娜 赵文彬 WU Feng;FAN Tong-rang;JIA Hong-jia;CUI Na;ZHAO Wen-bin(Institute of Scientific and Technical Information of Heibei Province,Shijiazhuang Hebei 050021,China;School of Information Science and Technology,Shijiazhuang Tiedao University,Shijiazhuang Hebei 050043,China)
出处 《河北省科学院学报》 CAS 2018年第2期8-17,共10页 Journal of The Hebei Academy of Sciences
关键词 用户兴趣 微博文本 关注者 LIBSVM LDA User interest Weibo text Followers LibSVM LDA
  • 相关文献

参考文献2

二级参考文献15

  • 1Choudhury M D,Diakopoulos N,Naaman M.Unfolding theevent landscape on twitter:classification and exploration of user categories[C]∥Proceedings of the ACM 2012 Conference on Computer Supported Cooperative Work.2012:241-244.
  • 2Perez-Sola C,Herrera-Joancomarti J.Classifying online socialnetwork users through the social graph[C]∥Proceedings of the 5th international conference on Foundations and Practice of Security.2012,115-131.
  • 3Chu Z,Gianvecchio S,Wang H,et al.Who is tweeting on Twitter:human,bot,or cyborg?[C]∥Proceedings of the 26th Annual Computer Security Applications Conference.2010:21-30.
  • 4Pennacchiotti M,Popescu A-M.Democrats,republicans andstarbucks afficionados:user classification in twitter[C]∥Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2011:430-438.
  • 5An Exhaustive Study of Twitter Users Across the World-Beevolve,Social Media Analytics Platform[EB/OL].http://www.beevolve.com/twitter-statistics/.
  • 6Xu Z,Ru L,Xiang L,et al.Discovering User Interest on Twitter with a Modified Author-Topic Model[C]∥Proceedings of the 2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology.Volume 01,2011:422-429.
  • 7Zhang C,Sun J.Large scale microblog mining using distributed MB-LDA[C]∥Proceedings of the 21st International Conference Companion on World Wide Web LSNA Workshop.2012:1035-1042.
  • 8Griffiths T L,Steyvers M.Finding scientific topics[J].Procee-dings of the National Academy of Sciences of the United States of America,2004,101(1):5228-5235.
  • 9Chang C-C,Lin C-J.LIBSVM:A library for support vector machines[J].ACM Trans.Intell.Syst.Technol.,2011,2(3):1-27.
  • 10Hall M,Frank E,Holmes G,et al.The WEKA data mining software: an update[J].SIGKDD Explor.Newsl.,2009,11(1):10-18.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部