摘要
该文研究了一类具有非线性发生率与时滞的非局部扩散SIR传染病模型的行波解问题.利用基本再生数R_0和最小波速c~*判定行波解的存在与否.首先,当c>c~*,R_0>1时,通过对一个截断问题使用Schauder不动点定理以及取极限的方法证明了所研究模型的行波解的存在性,其次,当0<c<c~*,R_0>1或R_0≤1时,利用双边拉普拉斯变换的性质证明了行波解的不存在性.
This paper is concerned with the traveling waves of a nonlocal dispersal SIR epidemic model with delay and nonlinear incidence. The threshold dynamics are determined by the basic reproduction number R_0 and the minimal wave speed c~*. First, when c c~*, R_0 1,the existence of the traveling waves is proved by applying Schauder's fixed point theorem and a limiting argument. Then, when 0 c c~*, R_0 1 or R_0 ≤ 1, the non-existence of traveling wave solutions is established by two-side Laplace transform.
作者
邹霞
吴事良
Zou Xia;Wu Shiliang(School of Mathematics arid Statistics,Xidian University,Xi'an 710071)
出处
《数学物理学报(A辑)》
CSCD
北大核心
2018年第3期496-513,共18页
Acta Mathematica Scientia
基金
国家自然科学基金(11671315)
陕西省自然科学基金(2017JM1003)~~