期刊文献+

基于金融大数据的个性化推荐技术研究 被引量:1

Research on Personalized Recommendation Technology Based on Financial Big Data
下载PDF
导出
摘要 随着金融大数据的出现和发展,各种理财产品和贷款项目的种类和数量都爆炸式的增长。如何有效地针对客户推荐提高推荐成功率成了关键问题。针对这一问题,文章提取代表客户兴趣、相应组群和相关项目的特征,然后利用神经网络进行预测,从而达到了个性化推荐的目的。实验结果表明:所建模型能有效地进行个性化推荐。 With the advent and development of financial big data, the types and quantities of all types of wealth management products and loan projects have exploded. How to effectively recommend for customers to improve the success rate of the recommendation has become a key issue. To solve the problem,we extract features which represent customers interests, corresponding groups and related items,and ultilize the neural net to predict to achieve the goal of personalized recommendation. The experiment result shows that the model can effectively acomplish the personalized recommendation.
作者 唐向红 彭超 陆见光 TANG Xiang-hong;PENG Chao;LU Jian-guang(Key Laboratory of Advanced Manufacturing Technology,Ministry of Education,Guizhou University,Guiyang 550025,China;Guizhou Provincial Key Laboratory of Public Big Data,Guiyang 550025,China)
出处 《价值工程》 2018年第20期203-205,共3页 Value Engineering
基金 贵州省科技支撑项目(黔科合支撑[2016]2008) 贵州省留学回国人员科技活动择优资助项目
关键词 金融大数据 个性化推荐 数据 financial big data personalized recommendation data
  • 相关文献

参考文献5

二级参考文献44

  • 1王文成.BP神经网络中自适应学习率的研究[J].计算机科学,1995,22(4):48-50. 被引量:12
  • 2Resnick and Varian. Recommender systems[J]. Communications of the ACM, 1997,40(3):56-58.
  • 3LAWRENCE R D, ALMASI G S, KOTLYAR V, et al. Personalization of supermarket product recommendations[R]. IBM Research Report, 2000.
  • 4SARWAR B M, KARYPIS G, KONSTAN J A, et al. Analysis of recommendation algorithms for e-commerce[A]. Proceedings of the ACM EC'00 Conference[C]. Minneapolis, MN.,2000.158-167.
  • 5RESNICK P, IACOVOU N, SUCHAK M, et al. Grouplens:an open architecture for collaborative filtering of netnews[A]. Proceedings of the Conference on Computer Supported Cooperative Work[C]. Chapel Hill, NC, 1994.175-186.
  • 6SHARDANAND U, MAES P. Social information filtering: algorithms for automating "word of mouth"[A].In Proceedings of the ACM CHI Conference(CHI95)[C].1995.
  • 7GOLDBERG D,NICHOLS D,OKI B M,et al.Using collaborative filtering to weave an information apestry[J]. Communications of the ACM,1992,35(12):61-70.
  • 8SCHAFER J B, KONSTAN J,RIEDL J.Recommender systems in e-commerce[A]. Proceedings of the First ACM Conference on Electronic Commerce[C]. Denver, CO, 1999.158-166.
  • 9BEN J, KONSTAN J A, JOHN R.E-commerce recommendation applications[R]. University of Minnesota,2001.
  • 10BREESE J, HECKERMAN D,KADIE C. Empirical analysis of predictive algorithms for collaborative filtering[A]. In Proceedings of the 14th Conference on Uncertaintly in Artificial Intelligence[C].1998.43-52.

共引文献324

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部