期刊文献+

灰色神经网络在云南省旅游收入中的预测研究 被引量:1

Forecasting Tourism Income of Yunnan Province by Gray Neural Network
下载PDF
导出
摘要 随着生活水平的不断提高,旅游业迎来了蓬勃的发展,其中国内旅游收入是衡量旅游业发展的重要依据。为了正确预测旅游收入,本文以灰色神经网络模型预测值与真实值的误差平方和最小为原则确定GM(1,1)灰色模型与BP神经网络的组合权重建立灰色神经网络模型,以讨论云南省旅游收入预测问题。选取1997-2011年云南省旅游收入实际数据为建模数据,以2012-2016年的实际数据为检验数据,对比分析GM(1,1)、BP神经网络和灰色神经网络的预测精度。其结果表明:灰色神经网络的预测精度最高,其预测误差均方差为0.24,小于GM(1,1)和BP神经网络预测误差的均方差。因此,基于灰色神经网络的组合预测模型具有较高的预测精度。 With the continuous improvement of living standards, tourism ushers in the opportunity to flourish where domestic tourism income is an important measure of tourism development. In order to forecast the domestic tourism revenue correctly, a gray neural network model for Yunnan province is established employing the combination weights of GM(1,1) modle and BP Neural network which are determined by the minimal the square sum of the error of prediction. Selecting the actual data of tourism income of Yunnan Province in1997-2011 year as the built samples, and the data 2012-2016 as testing samples, we study the prediction accuracy of GM(1,1), BP neural Network and grey neural network. The results show that the grey Neural network has the highest prediction accuracy with the mean square error is 0.72, which is less than the GM(1,1) and BP neural networks prediction error variance. Therefore, the grey neural network has a high prediction precision which can be used for forecasting the tourism income.
作者 夏杰 许海洋 XIA Jie;XU Hai-yang(School of Science Southwest University of Science and Technology Mianyang 621010 China)
出处 《价值工程》 2018年第21期104-108,共5页 Value Engineering
基金 西南科技大学理学院创新基金项目"基于量化投资平台的交易策略研究"(项目编号:LXCX-05)
关键词 GM(1 1)灰色模型 BP神经网络 灰色神经网络 组合权重 旅游收入 GM (1,1) grey modle BP neural network grey neural network combination weights tourism income
  • 相关文献

参考文献13

二级参考文献72

共引文献269

同被引文献8

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部