期刊文献+

融合蜂群行为的量子进化算法

Bee-Behaved Colony Quantum-Inspired Evolutionary Algorithm
下载PDF
导出
摘要 为提高量子进化算法的收敛精度和收敛速度,以人工蜂群算法为基本进化框架,提出一种融合蜂群行为的量子进化算法.将采用相位编码的量子进化种群划分为量子开采种群、量子跟随种群以及量子侦察种群,在每个种群内模拟蜜蜂觅食行为寻优,其中量子开采种群采用混沌扰动搜索,量子跟随种群采用柯西变异操作进化.同时对所有种群个体采用量子染色体的两步旋转更新方法,并进行自适应的动态变异操作.利用基准测试函数进行仿真,与相关方法对比分析可知,所提出的算法在大部分的函数上都表现出较好的性能,能有效提高全局收敛性能. In order to promote the convergence precision and speed of quantmu-inspired evolutionary algorithm, a new bee-behaved quantum-inspired evolutionary algorithm is proposed based on the framework of ABC algorithm The whole population can be encoded with phase and can be divided into three populations ,which are named as quantum employed population, quantum onlooker population and quantum scout population. Every sub-population can work in term of bee behaviors, quantum employed population perform the chaos search and the quantum onlooker population can perform the Cauchy mutation. Every individual in the population can be rotated in two steps, and dynamic mutation operation can also act on every individual. Simulation results of benchmark functions show that the proposed algorithm performs well on most of functions and can get better convergence results.
作者 刘振 刘文彪 Liu Zhen;Liu Wenbiao(College of Coastal Defense Force,Naval Aeronautical University,Yantai 264001,China)
出处 《南京师范大学学报(工程技术版)》 CAS 2018年第2期63-69,共7页 Journal of Nanjing Normal University(Engineering and Technology Edition)
基金 国家自然科学基金(51605487) 国家自然科学基金(61174031)
关键词 量子进化算法 蜂群 混沌 变异 旋转 quantum-inspired evolutionary algorithm bee colony chaos mutation rotation
  • 相关文献

参考文献4

二级参考文献22

  • 1郭子龙,王孙安.三种混沌免疫优化组合算法性能之比较研究[J].系统仿真学报,2005,17(2):307-309. 被引量:9
  • 2王孙安,郭子龙.混沌免疫优化组合算法[J].控制与决策,2006,21(2):205-209. 被引量:13
  • 3蒙文川,邱家驹,卞晓猛.电力系统经济负荷分配的人工免疫混沌优化算法[J].电网技术,2006,30(23):41-44. 被引量:22
  • 4DE L N, CASTRO. Artificial immune system as a novel soft comput- ing paradigm[J]. Soft Computing Journal, 2003, 7(7): 121 - 129.
  • 5TIMMIS J, NEAL M, HUNT J. Artificial immune system for data analysis[J]. Biosystems, 2000, 55(1/3): 143 - 150.
  • 6TIMMIS J, NEAL M. A resource limited artificial immune system for data analysis[J]. Knowledge Based Systems, 2001, 14(3/4): 121 - 130.
  • 7OLFA N,FABIO G,DIPANKAR D.The fuzzy artificial immune system:motivations,basic concepts and application to clustering and web profiling[J].Fuzzy System,2002,1(2):711-716.
  • 8CAO X B,QIAO H,XU Y W.Negative selection based immune optimization[J].Advances in Engineering Software,2007,38(10):649-656.
  • 9CHUN J S,JUNG H K,HAHN S Y.A study on comparison of optimization pecrformance between immune algorithm and other heuristic algorithms[J].IEEE Transactions on Magnetic,1998,34(5):2972-2975.
  • 10LIU B,WANG L,JIN Y H,et al.Improved particle swarm optimization combined with chaos[J].Chaos Solitons & Fractals,2005,25(5):1261-1271.

共引文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部