期刊文献+

应用DG方法的新型局部变差间断监测器(英文)

New DiscontinuityIndicator for DG Method UsingLocal Variation
下载PDF
导出
摘要 受到总变差有界(TVB)方法中总变差概念的启示,提出适用于间断伽辽金(DG)方法的局部变差概念.在此基础上,对Soblev空间中的误差估计进行严格的界定,建立一种能够准确甄别激波与接触间断等间断位置的新型识别器.研究结果表明:与有限体积方法中的间断监测器相比,该新型识别器完全基于单元局部,不需要依靠相邻单元的任何信息,具有典型的有限元方法的固有属性,更容易在算法上实现.通过典型的数值算例对该识别器进行验证,结果表明:该识别器非常出色地实现对间断位置的识别,可用于间断元方法的间断位置监测. Inspired by the concept of total variation in the total variation bounded(TVB)methods,a similar concept of local variation for discontinuous Galerkin(DG)method was presented.Based on the local variation,a rigorous bounding procedure for error evaluation in the Soblev′s space was conducted,and then a new type of discontinuity indicator was developed to detect the locations of discontinuities such as shock and contact et al.Compared with the detectors in the finite volume method,the new indicator is completely local within an element and does not rely on any information from neighboring elements.As a result,the indicator features intrinsic characteristics of the finite element method and is very simple to implement.The typical numerical examples show a good performance of the newly constructed indicator and it becomes a proper candidate for detecting tasks of DG applications.
作者 黄日鑫 谭永华 吴宝元 李光熙 HUANG Rixin;TAN Yonghua;WU Baoyuan;LI Guangxi(Xi'an Aerospace Propulsion Institute,Xi'an 710100,China;Academy of Aerospace Propulsion Technology,Xi'an 710100,China)
出处 《华侨大学学报(自然科学版)》 CAS 北大核心 2018年第4期520-525,共6页 Journal of Huaqiao University(Natural Science)
基金 国家自然科学基金资助项目(11702205)
关键词 间断监测器 间断伽辽金方法 局部变差 盖根鲍尔重构 欧拉方程 discontinuity indicator discontinuous Galerkin method local variation Gegenbauer reconstruction Euler equation
  • 相关文献

参考文献5

二级参考文献38

  • 1贺立新,张来平,张涵信.间断Galerkin有限元和有限体积混合计算方法研究[J].力学学报,2007,39(1):15-22. 被引量:28
  • 2Cockburn B,Shu Chi-Wang.The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV:The multidimensional case[J].Math Comput,1990,54:545.
  • 3Cockburn B,Shu Chi-Wang.TVB Runge-Kutta discontinuous Galerkin method for conservation laws V:Mul-tidimensional systems[J].J Comp Phys,1998,144:199-224.
  • 4Bassi F,Rebay S.High-order accurate discontinuous finite element solution of the 2D Euler equations[J].Journal of Computational Physics,1997,138:251-285.
  • 5Persson,Peraire J.Sub-Cell shock capturing for Discontinuous Galerkin methods[A].Proc of the 44th AIAA Aerospace Sciences Meeting and Exhibit[C].2006.
  • 6Krivodonova L,Xin J,Remacle J F,et al.Shock detection and limiting with discontinuous Galerkin methods for hyperbolic conservation laws[J].Applied Numerical Mathematics,2004,48:323-338.
  • 7Hong Luo,Joseph D Baum,Rainald Lhner.On the computation of steady-state compressible flows using a discontinuous Galerkin method[J].Int J Numer Meth Engng,2008,73:597-623.
  • 8Timothy J Barth,Dennis C Jespersen.The Design of Application of Upwind Schemes on Unstructured Grids[R].AIAA-89-0366.
  • 9Batten P,Clarke N,Lambert C,et al.On the Choice of Wavespeeds for the HLLC Riemann Solver[J].SIAM J Sci Comput,1997,18(6):1553-1570.
  • 10Jameson A,Schmidt W,Turkel E.Numerical Solutions of the Euler Equations by Finite Volume Methods Using Runge-Kutta Time-Stepping Schemes[A].AIAA Paper 81-1259,AIAA 14th Fluid and Plasma Dynamic Conference[C].Palo Alto,June 1981.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部