摘要
在具有Ricci曲率的有界维非紧致完备黎曼流形上考虑了关于加权Hodge-Laplacian的Schrdinger算子的初值Cauchy问题,证明了初值满足一定条件时该问题存在唯一解。
The Cauchy initial value problem about Schrodinger operator for weighted Hodge-Laplacian on a bounded n(n≥3) dimensional noncompact complete Riemann manifold(M,g)with Ricci curvature was considered in this paper. It was proved that there was a unique solution to this problem when the initial value satisfied a certain condition.
作者
陈晨
CHEN Chen(Department of Mathematics and Physics,Nantong Normal College,Nantong 226010,China)
出处
《新乡学院学报》
2018年第6期8-10,共3页
Journal of Xinxiang University