期刊文献+

氮掺杂碳点修饰改性钨酸铋的光催化性能研究 被引量:3

Photocatalytic Activity of N-doped Carbon Quantum Dots Modified Bismuth Tungstate
下载PDF
导出
摘要 用超声法制备了氮掺杂碳量子点(N-CQDs)/钨酸铋(Bi_2WO_6)复合光催化剂。通过SEM、XRD、IR、XPS和UV-Vis对样品形貌、结构、组成和光学性能进行表征,并以可见光催化降解罗丹明B(Rh B)考察其光催化活性。实验结果表明:NCQDs与片状Bi_2WO_6杂化形成了N-CQDs/Bi_2WO_6复合光催化剂;与单一Bi_2WO_6相比,N-CQDs/Bi_2WO_6表现出更高的光催化活性,其中0.3%-N-CQDs/Bi_2WO_6催化反应的一级反应速率常数达7×10-3min-1,是纯Bi_2WO_6的3.6倍。光催化活性提高归结于:N-CQDs高度分散在Bi_2WO_6表面上形成界面相互作用,及N-CQDs上转换性能和良好的电子传输能力与Bi_2WO_6光催化性能的协同作用。 The N-CQDs/Bi2WO6 composite photocatalysts were successfully synthesized by using a liquid ultrasonic method. The prepared samples were characterized by SEM, XRD, IR, XPS, UV-Vis and photogradation of Rh B for morphological, comprehensive structural and visible-light properties. The results showed that the N-CQDs/Bi2WO6 composites were formed via the hybridization of N-CQDs and flaky Bi2WO6. The N-CQDs/Bi2WO6 photocatalysts possessed enhanced photocatalytic activity than the single phase Bi2WO6 under visible light, and the 0.3%-N-CQDs/Bi2WO6 showed the highest photocatalytic activity with a k=0.007 min^-1, the value of which was as 3.6 times as that of the pure Bi2WO6. The enhanced performance could be attributed to the interfacial interaction produced by high-dispersed N-CQDs on the surface of Bi2WO6 and the synergy effect of its good capability of electronic transmission and up-conversion fluorescence of N-CQDs with Bi2WO6 photocatalytic properties.
作者 周建伟 王储备 褚亮亮 朵芳芳 苏新梅 张真道 ZHOU Jianwei;WANG Chubei;CHU Liangliang;DUO Fangfang;SU Xinmei;ZHANG Zhendao(Institute of Energy and Fuel,Xinxiang University,Xinxiang 453003,Chin)
出处 《新乡学院学报》 2018年第6期26-31,共6页 Journal of Xinxiang University
基金 河南省高等学校重点科研项目(18A430025 18B530002) 新乡市重点科技攻关项目(ZG15022) 新乡学院科技创新基金项目(15ZP05)
关键词 钨酸铋 氮掺杂碳量子点 修饰 光催化 bismuth tungstate N-doped carbon quantum dots modification photocatalysis
  • 相关文献

参考文献4

二级参考文献156

  • 1Zhang X W,Zhang T,Ng J W,et al.Environ.Sci.Technol.,2010,44(1):439-444.
  • 2Denny I F,Permana E,Scott J,et al.Environ.Sci.,Technol.,2010,44(14):5558-5563.
  • 3WU Da-Wang(吴大旺),LI Shuo(李硕),ZHANG Qiu-Lin (张秋林),et al.Wuji Huaxue Xuebao,2012,26(7):1383-1388.
  • 4Tryk D A,Fujishima A,Honda K,Electrochim Acta,2000,45(15-16):2363-2376.
  • 5Yang X F,Cui H Y,Li Y,et al.A CS Catal.,2013,3(3):363-369.
  • 6Long M C,Cai W M,Cai J,et al.J.Phys.Chem.B,2006,110(41):20211-20216.
  • 7ZHANG Li(张丽),YAN Jian-Hui(阎建辉),ZHOU Min-Jie (周敏杰),et al.Wuji Huaxue Xuebao,2012,28(9):1827-1834.
  • 8Xiao X,Hao R,Liang M,et al.J.Hazard.Mater.,2012,233-234:122-130.
  • 9Iwaszuk A,Nolan M,Jin Q L,et al.J.Phys.Chem.C,2013,117(6):2709-2718.
  • 10Fan H M,Jiang T F,Li H Y,et al.J.Phys.Chem.C,2012,116(3):2425-2430.

共引文献98

同被引文献60

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部