期刊文献+

基于遗传算法的运动想象脑电信号分类准确率的提升方法

An improved classification method for motor imagery EEG signals based on genetic algorithm
下载PDF
导出
摘要 为了提高运动想象脑电信号的分类准确率,本研究提出了一种基于遗传算法(genetic algorithm,GA)的脑电信号分类提升方法。该方法利用遗传算法与共空间模式算法(common spatial pattern,CSP)相结合,进行不同时间段的特征提取,再利用遗传算法得到不同时间段对分类正确率的权值及数据可信度。利用本实验室采集的脑电信号进行测试,分类准确率由加权前的80%左右提升至加权后的95%以上。实验结果证实,该方法可以有效提高脑电信号分类准确率,并且可以根据可信度剔除低质量的数据。同时,该方法还可以与其他特征提取方法相结合,对不同时、频特性进行有效性及可信度计算,提升分类准确率。这也是本方法更深一层的意义。 In order to improve the recognition rate of motor imagery EEG signals,an improvement classification method based on genetic algorithm( GA) was proposed. The proposed method combined GA and common spatial pattern( CSP) to extract the features of different time. After considering the classification accurate,GA was used to calculate different time slices' weights. And based on the weights,the data credibility was calculated. Using the EEG signals collected in this laboratory,the accuracy of classification improved from about 80% before weighting to more than 95% after weighting. The experimental results confirm that this method can effectively improve the classification accuracy of EEG signals,and can eliminate low-quality data according to credibility. At the same time,this method can also be combined with other feature extraction methods to calculate the validity and credibility of different time and frequency characteristics to improve the classification accuracy.
作者 高诺 鲁昊 鲁守银 吴林彦 GAO Nuo;LU Hao;LU Shouyin;WU Linyan(Information & Electrical Engineering Department,Shandong Jianzhu University,Jinan 250101,China)
出处 《生物医学工程研究》 2018年第2期127-131,共5页 Journal Of Biomedical Engineering Research
基金 国家自然科学基金资助项目(61403237) 山东省科技重大专项(2015ZDXXX0801A03) 山东省重点研发计划项目(2017CXGC1505)
关键词 脑电信号(EEG) 共同空间模式(CSP) 遗传算法(GA) 分类结果加权 数据筛选 Electroencephalogram (EEG) Colmnon spatial pattern(CSP) Genetic algorithm(GA) Classification result weigh-ting Data screening
  • 相关文献

参考文献11

二级参考文献105

  • 1魏英姿,赵明扬,黄雪梅,胡玉兰.求解TSP问题的贪心遗传算法[J].计算机工程,2004,30(19):19-20. 被引量:16
  • 2李同磊,刘伯强,李可,于兰兰.基于脑电信号的手指动作识别[J].山东科学,2006,19(1):1-5. 被引量:2
  • 3Wolpaw JR, Birbaumer N, Heetderks W, et al. Brain-computer interface technology:a review of the first international meeting [J ]. IEEE Trans Rehabil Eng, 2000, 8(2) :164- 173.
  • 4Quadrianto N, GuanCunTai, Dat TH, et al. Sub-band Common Spatial Pattern (SBCSP) for Brain-Computer Interface[A] In: 2007 3rd International IEEE/EMBS Conference on Neural Engineering [C]. Piscataway, NJ, USA:IEEE, 2007. 219- 225.
  • 5Peters, BO, Pfurtscheller G., Flyvbjerg H. Automatic differentiation of multichannel EEG signals [ J]. Transactions on Biomedical Engineering 2001,48(1) : 111 - 116.
  • 6Wu Wei, Gao Xiaorong, Gao Shangkai. One-versus-the-best (OVR) algorithm: an extention of common spacial patterns(CSP) algorithm to muti-class case [ A ]. In : Proceedings of 27th Annual International Conference of the Engineering in Medicine and Biology Society,[C]. Piscataway, NJ, USA: IEEE-EMBS, 2005, 2387- 2390.
  • 7A. Schloegl, K. Lugger, G. Pfurtscheller. Using Adaptive Autoregressive Parameter for a Brain-Computer-Interface experiment [A]. In: Proceedings of the 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society [ C ], Piscataway, NJ, USA: IEEE, 1997.1533-1535.
  • 8Keim, ZA, Aunon JI. A new mode of communication between man and his surroundings[J]. IEEE Trans on Biomedical Engineering, 1990,31(12) : 1209 - 1214.
  • 9Wang Yijun, Gao Shangkai, Gao Xiaorong. Common spacial pattern method for charmel selection in motor imagery based brain-computer imerface [ A ]. In: Proceedings of 27th Annual International Conference of the IEEE Engineering in Medicine and Biology Society [ C ]. Piscataway, N J, USA: IEEE,2005. 5392 - 5395.
  • 10Molina G. G.. BCI adaptation using incremental-SVM learning[ A]. In: Proceedings of 3rd International IEEE EMBS Conference on Neural Engineering[C]. Piscataway, N J, USA: IEEE,2007. 337 - 341.

共引文献262

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部