期刊文献+

基于支持向量回归的呼吸运动预测技术的研究 被引量:1

Study on predicting respiratory motion with support vector regression
下载PDF
导出
摘要 胸腹部肿瘤放疗中,由于呼吸运动的影响需要对靶区进行实时跟踪以保证放疗精度,并通过预测来补偿系统延时。本研究提出一种基于支持向量回归的呼吸运动预测方法,该方法先选取一段呼吸运动序列进行训练得到回归模型,当有新的呼吸序列时,根据训练模型计算输出。并在此基础上,动态更新训练集,使模型在线更新,实现精确在线支持向量回归。实验中对7例呼吸运动样本数据分别用离线模型和在线模型进行训练并预测,平均绝对误差分别为0.42 mm和0.30 mm。在线精确支持向量回归能更准确刻画呼吸运动轨迹,拟合结果精度高,满足实际应用中的需求。 The target is usually tracked in real time at thoracic and abdominal radiotherapy due to the effect of respiratory motion,the prediction is necessary to compensate the system latency. A prediction method based on support vector regression( SVR) was proposed,a part of historical data for training was selected,and then the output was calculated according to the training model when there was a new sequence. Furthermore,the training set would be dynamically updated and the accurate online support vector regression model was achieved. The experiment selected seven respiratory motion data; the model was trained by on-line and off-line method,then prediction was carried out. The mean absolute error was 0. 42 mm,0. 30 mm,respectively. The respiratory motion is accurately described by the online accurate support vector regression,and the results with high precision can satisfy practical application.
作者 康开莲 童蕾 万伟权 孙海涛 陈超敏 KANG Kailian;TONG Lei;WAN Weiquan;SUN Haitao;CHEN Chaomin(Institute of Biomedical Engineering,Southern Medical University,Guangzhou 510515,China;Guangdong Vocational College of Mechanical and Electrical Technology,Guangzhou 510515)
出处 《生物医学工程研究》 2018年第2期132-137,共6页 Journal Of Biomedical Engineering Research
基金 广东省科技计划项目(2015A020214013)
关键词 放射治疗 呼吸运动 预测算法 支持向量回归 核函数 Radiotherapy Respiratorymotion Support vector regression Prediction algorithm Kernel function
  • 相关文献

参考文献4

二级参考文献54

  • 1YANG Yang LI Kai-yang.Neural Network Based on GA-BP Algorithm and its Application in the Protein Secondary Structure Prediction[J].Chinese Journal of Biomedical Engineering(English Edition),2006,15(1):1-9. 被引量:8
  • 2莫惠栋.回归分析中的病态矩阵及其改进[J].作物学报,2006,32(1):1-6. 被引量:9
  • 3雷英杰,张善文,李续武,周创明.MATLAB遗传算法工具箱及应用[M].西安:西安电子科技大学出版社,2009.
  • 4Minohara S,Kanai T,Endo M,et al.Respiratory gated irradiation system for heavy-ion radiotherapy[J].International Journal of Radiation Oncology,2000,47(4):1097 -1103.
  • 5Emery R,Rodriguez L,Barsa J,et al.Clinical experience using respiratory gated radiation therapy:comparison of freebreathing and breath-hold techniques[J].International Journal of Radiation Oncology,2004,60(2):419 -426.
  • 6Tchoupo G,Docef A.Nonlinear set membership time series prediction of breathing[A].In:Luciano Sbaiz,Olivier Cuisenaire,eds.Proceedings of 16th European Signal Processing Conference (EUSIPCO 2008)[C].Lausanne:EURASIP,2008.25-29.
  • 7Man KF,Tang KS,Wong SK.Genetic algorithms:concepts and designs[M].London:Springer,2001.
  • 8Belew RK,McInerney J,Schraudolph NN.Evolving networks:Using the genetic algorithm with connectionist learning[R].CS90-174,1990.
  • 9Kitano H.Empirical studies on the speed of convergence of neural network training using genetic algorithms[R].AAAI -90-118,1990.
  • 10Kim Changick,Hwang Jenq-Neag.Fast and Automatic Video Object Segmentation and Tracking for Content-Based Applications[J].IEEE Transactions on Circuits and Systems for Video Technology,2002,12(2):122-129.

共引文献23

同被引文献11

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部