摘要
为了将将原有经典的有界性假设减弱为次线性增长,文中利用迭代技巧给出了p-调和方程的弱解满足次线性增长时的Liouville型定理,通过选取合适的试验函数,借助H9lder不等式和Sobolev嵌入来进行放缩处理并加以证明,使其能够在更广的空间研究问题,对同类型问题具有指导意义.
In order to reduces the classical assumption of boundedness to sublinear growth,the Liouville theorem for the p-harmonic equation whose weak solutions satisfy the sublinear growth condition is presented by the iterative method.It is proved through scaling by selecting the appropriate test functions and using the H9 lder inequality and Sobolev embedding,which has a certain guiding significance for the same type problem,and can study the problem in a wider space.
作者
王新敬
WANG Xinjing(Department of Applied Mathematics,Northwestern Polytechnical University,Xi' an,710129,China)
出处
《西安工业大学学报》
CAS
2018年第3期189-191,共3页
Journal of Xi’an Technological University
基金
国家自然科学基金(11771354)