摘要
针对复杂的转子振动信号中同时存在随机噪声干扰和工频噪声干扰的问题,提出了基于奇异值和奇异向量相结合的降噪方法。首先,对振动信号进行奇异值分解(singular value decomposition,简称SVD),根据奇异值谱确定振动信号有效奇异值阶次;其次,对有效阶次范围内的奇异向量进行快速傅里叶变换(fast Fourier transform,简称FFT),依据幅值谱筛选出对应于工频噪声的奇异向量;最后,利用其余的奇异值和奇异向量进行重构得到降噪的时域信号。通过仿真信号和工程试验信号对该方法进行了验证,结果表明,基于奇异值和奇异向量相结合的降噪方法,不但能有效降低振动信号中的随机噪声干扰,还能有效降低工频噪声干扰,同常用的陷波器方法相比所提出方法具有明显优势。
出处
《振动.测试与诊断》
EI
CSCD
北大核心
2018年第3期553-558,共6页
Journal of Vibration,Measurement & Diagnosis
基金
国家高技术研究发展计划("八六三"计划)资助项目(2015AA043005)
南沙科技计划资助项目(2014CX07)