期刊文献+

酿酒酵母乙酰辅酶A精细调控合成萜类化合物研究进展 被引量:6

Fine-regulation of Saccharomyces cerevisiae acetyl-CoA to synthetize terpenoids
下载PDF
导出
摘要 酿酒酵母作为细胞工厂被用来生产多种萜类化合物。乙酰辅酶A为合成萜类化合物的基本前体,细胞质乙酰辅酶A供应不足会导致目标产物产量较低,调控乙酰辅酶A合成是构建目标萜类化合物高产合成途径的重要手段。本文介绍了酿酒酵母乙酰辅酶A作为重要中心碳代谢分子,主要在细胞核组蛋白乙酰化、细胞质丙酮酸脱氢酶支路、线粒体三羧酸循环和过氧化物酶体乙醛酸循环中参与的代谢过程。总结了通过强化酿酒酵母内源丙酮酸脱氢酶支路,引入低三磷酸腺苷(ATP)消耗的异源乙酰辅酶A合成途径,增加辅酶A合成和利用线粒体乙酰辅酶A含量高且对其不渗透的特性进行区域化合成以提高乙酰辅酶A含量的代谢工程策略,旨在为酿酒酵母萜类化合物的高效合成提供借鉴。 Saccharomyces cerevisiae has been engineered as a cell factory for producing terpenoids. Acetyl-CoA is a basic precursor for terpenoid synthesis,but its insufficient supply in cytoplasm may result in a lower yield of desired products. The regulation of acetyl-CoA synthesis is an important means to construct high-yield synthetic pathway for target terpenoids. Therefore,this paper illustrates an important central carbon metabolism molecule acetyl-CoA,which is involved in the metabolism of four different organelles,including nucleus histone acetylation,cytoplasm pyruvate dehydrogenase branch,mitochondria tricarboxylic acid cycle,and peroxisome glyoxylate shunt. The metabolic engineering strategies to improve the content of acetyl-CoA,include strengthening endogenous pyruvate dehydrogenase branch,introducing heterologous acetyl-CoA synthetic pathway with lower ATP input requirement,enhancing CoA synthesis and mitochondrial regionalization of acetyl-CoA,which may be valuable for the efficient production of terpenoids in Saccharomyces cerevisiae.
作者 樊婧婧 赵雨佳 王晨 李春 周晓宏 FAN Jingjing;ZHAO Yujia;WANG Chen;LI Chun;ZHOU Xiaohong(School of Chemistry and Chemical Engineering,Beijing Institute of Technology,Beijing 100081,China)
出处 《化工进展》 EI CAS CSCD 北大核心 2018年第7期2773-2779,共7页 Chemical Industry and Engineering Progress
基金 国家自然科学基金项目(21476026)
关键词 酿酒酵母 萜类化合物 乙酰辅酶A 生物工程 发酵 合成生物学 Saccharomyces cerevisiae terpenoids acetyl-CoA biological engineering fermentation molecular biology
  • 相关文献

参考文献1

二级参考文献18

  • 1Wolfe AJ. The acetate switch. Microbiology and Molecular Biology Reviews, 2005, 69 : 12-50.
  • 2Winzeler EA, Shoemaker DD, Astromoff A, Liang H Anderson, K Andre B, Bangham R, Benito R, Boeke JD, Bussey H, Chu AM, Connelly C, Davis K, Dietrich F, Dow SW, E1 Bakkoury M, Foury F, Friend SH, Gentalen E, Giaever G, Hegemann JH, Jones T, Laub M, Liao H, Liebundguth N, Lockhart DJ, Lucau-Danila A, Lussier M, M'Rabet N, Menard P, Mittmann M, Pal C, Rebischung C, Revueha JL, Riles L, Roberts C J, Ross-MacDonald P, Scherens B, Snyder M, Sookhai-Mahadeo S, Storms RK, Veronneau S, Voet M, Volckaert G, Ward TR, Wysocki R, Yen GS, Yu K, Zimmermann K, Philippsen P, Johnston M, Davis RW.. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science, 1999, 285:901-906.
  • 3Paradise EM, Kirby J, Ro DK, Keasing JD. Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae for high-level production of isoprenoids. Metabolic Engineering, 2007, 9 : 160-168.
  • 4Asadollahi MA, Maury J, Patil KR, Schalk M, Clark A, Nielsen J. Enhancing sesquiterpene production in Saccharomyces cerevisiae through in silico driven metabolic engineering. Metabolic Engineering, 2009.
  • 5Engels B, Dahm P, Jennewein S. Metabolic engineering of taxadiene biosynthesis in yeast as a first step towards Taxol (Paclitaxel) production. Metabolic Engineering, 2008, 10:201-206.
  • 6Akamatsu S, Kamiya H, Yamashita N, Motoyoshi T, Goto-Yamamoto N, Ishikawa T, Okazaki N, Nishimura A. Effects of aldehyde dehydrogenase and acetyl-CoA synthetase on acetate formation in sake mash. Journal Bioscience Bioengineering, 2000, 90:555-560.
  • 7Gao L, Chiou W, Tang H, Cheng XH, Camp HS, Burns DJ. Simultaneous quantification of malonyl-CoA and several other short-chain acyl-CoAs in animal tissues by ion-pairing reversed-phase HPLC/MS. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 2007, 853:303-313.
  • 8vandenBerg MA, deJongGubbels P, Kortland C J, vanDijken JP, Pronk JT, Steensma HY. The two acetyl- coenzyme A synthetases of Saccharomyces cerevisiae differ with respect to kinetic properties and transcriptional regulation. Journal of Biological Chemistry 1996, 271: 28953 -28959.
  • 9Sato K, Yoshida Y, Hirahara T, Ohba T. On-line measurement of intracellular ATP of Saccharomyces cerevisiae and pyruvate during sake mashing. Journal Bioscience Bioengineering, 2000, 90:294-301.
  • 10Postgate J. Viability measurements and the survival of microbes under minimum stress. Advances Microbial Physiology, 1967, 1.

共引文献14

同被引文献22

引证文献6

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部