期刊文献+

基于自适应密度聚类非线性流形学习降维方法研究与实现 被引量:2

Research and Implementation of Dimension Reduction Method for Nonlinear Manifold Learning Based on Adaptive Density Clustering
下载PDF
导出
摘要 针对传统降维方法降维后对流形产生扭曲导致流形展开后的结构发生"畸形"、正确率较低、可信度较差等不足.本文提出了一种基于自适应密度聚类的非线性流形学习降维方法,用分段线性模型来近似流形.利用MATLAB设计并实现了算法,通过实验证明在人造和现实图像数据集上,本流形学习降维算法与现有最先进的流形学习算法相比,产生良好的降维效果. Aiming at the shortcomings of the traditional dimension reduction method that the manifold is distorted by those method af- ter the dimension reduction causes the "deformity" of the manifold after the expansion of the manifold. Otherwise, the correct rate and the credibility of traditional dimension reduction method is low. In this paper, a nonlinear manifold learning dimension reduction meth- od based on adaptive density clustering is proposed, and the piecewisc linear model is used to approximate the manifold. The algorithm is designed and implemented by MATLAB. It is proved by experiments that in the artificial and realistic image datasets, the manifold learning dimension reduction algorithm has a better dimension reduction result compared with the existing advanced manifold learning algorithm.
作者 陈晋音 郑海斌 保星彤 CHEN Jin-yin;ZHENG Hai-bin;BAO Xing-tong(College of Information and Engineering,Zhejiang University of Technology,Hangzhou 310023,China)
出处 《小型微型计算机系统》 CSCD 北大核心 2018年第8期1641-1645,共5页 Journal of Chinese Computer Systems
基金 国家自然科学青年基金项目(61502423)资助 浙江省科技厅科研院专项基金(2016F50047)资助
关键词 流形学习 降维 机器学习 平行映射 manifold dimension reduction machine learning parallel projection
  • 相关文献

参考文献1

二级参考文献29

  • 1Huang Z X. Extensions to the K-means algorithm for clustering large data sets with categorical values. Data Mining and Knowledge Discovery, 1998, 2(3): 283-304.
  • 2Jain A K, Dubes R C. Algorithms for Clustering Data. New Jersey: Prentice-Hall, 1988.
  • 3Han J, Kamber M. Data Mining: Concepts and Techniques. San Francisco: Morgan Kaufmann, 2001.
  • 4Chen W F, Feng G C. Spectral clustering: a semi-supervised approach. Neurocomputing, 2012, 77(1): 229-242.
  • 5Zhang W, Yoshida T, Tang X J, Wang Q. Text clustering using frequent itemsets. Knowledge-Based Systems, 2010, 23(5): 379-388.
  • 6Hsu C C, Chen C L, Su Y W. Hierarchical clustering of mixed data based on distance hierarchy. Information Sciences, 2007, 177(20): 4474-4492.
  • 7Hsu C C, Huang Y P. Incremental clustering of mixed data based on distance hierarchy. Expert Systems with Applications, 2008, 35(3): 1177-1185.
  • 8Lloyd S P. Least squares quantization in PCM. IEEE Transactions on Information Theory, 1982, 28(2): 129-137.
  • 9Berget I, Mevik B H, Nas T. New modifications and applications of fuzzy C-means methodology. Computational Statistics & Data Analysis, 2008, 52(5): 2403-2418.
  • 10Guha S, Rastogi R, Shim K. CURE: an efficient clustering algorithm for large databases. In: Proceedings of the 1998 ACM SIGMOD International Conference on Management of Data. Washington: ACM Press, 1998. 73-84.

共引文献38

同被引文献18

引证文献2

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部