期刊文献+

一种自适应参数调整的水波优化算法 被引量:4

Water Wave Optimization Algorithm with Adaptive Parameter Adjustment
下载PDF
导出
摘要 水波优化算法(Water Wave Optimization,WWO)是受浅水波理论启发而提出的一种新兴群体智能算法,其具有控制参数少、种群规模小、实现简单、计算开销小等优点,但依然存在局部搜索能力不强、收敛速度较慢等缺陷.首先,通过对水波优化算法在执行全局和局部搜索阶段控制参数变化进行分析的基础上,提出了一种自适应参数调整策略改进的水波优化算法;最后,对改进的算法和包括原WWO、SCA、DA等在内的四种算法在10个标准测试函数上的寻优性能进行试验.结果表明,所提出的策略有效提升了水波优化算法的整体性能,无论在收敛精度还是收敛速度上,改进的水波算法相较于其他三种算法优化结果更加稳定. Water Wave Optimization ( WWO } is a new kind of swarm intelligence algorithm inspired by the shallow water wave theo- ry- Less control parameters, a small population size,easy implementation and small computational overheads,it also has disadvantages: less strong local search ability,slow convergence speed and so on. First,through the waves in the execution of global and local search optimization algorithm for requirements based on the analysis of the control parameters, improved water wave optimization algorithm used the adaptive adjustment strategy to adjust the control parameters; Finally, for the improved algorithm and including original WWO.SCA.DA, these four kinds of algorithms on 10 standard test functions optimization performance simulation experiment. Results show that the proposed strategy to effectively enhance the water waves to optimize the overall performance of the algorithm, in both the convergence accuracy and convergence speed, improved water wave algorithm, compared with other three kinds of algorithm opti- mization results are more stable.
作者 杜兆宏 夏培淞 邱飞岳 朱会杰 DU Zhao-hong;XIA Pei-song;QIU Fei-yue;ZHU Hui-jie(College of Education Science and Technology,Zhejiang University of Technology,Hangzhou 310023,China)
出处 《小型微型计算机系统》 CSCD 北大核心 2018年第8期1646-1651,共6页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(61472366 61379077)资助
关键词 水波优化算法 自适应参数调整 对数递减策略 函数优化 Water wave optimization algorithm adaptive parameter adjustment logarithmic decreasing strategy function optimization
  • 相关文献

参考文献4

二级参考文献77

  • 1李宏,王宇平,焦永昌.解非线性两层规划问题的新的遗传算法及全局收敛性[J].系统工程理论与实践,2005,25(3):62-71. 被引量:22
  • 2王芳,邱玉辉.一种引入单纯形法算子的新颖粒子群算法[J].信息与控制,2005,34(5):517-522. 被引量:18
  • 3孙艳丰,王众托.自然数编码遗传算法的最优群体规模[J].信息与控制,1996,25(5):317-320. 被引量:22
  • 4赵玉新,Xin-SheYang,刘立强.新兴元启发式优化算法[M].北京:科学出版社,2013..
  • 5Wolpert D,Macready W. No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation, 1997,1 (1) : 67- 82.
  • 6Simon D. Biogeography-based optimization. IEEE Transactions on Evolutionary Computation, 2008,12(6) : 702 - 713.
  • 7Rashedi E, Nezamabadi-Pour H, Saryazdi S. GSA: A gravitational search algorithm. Information Sciences, 2009,179(13) :2232-2248.
  • 8Oftadeh R, Mahjoob M J, Shariatpanahi M. A novel meta-heuristic optimization algorithm inspired by group hunting of animals: Hunting search. Computers ~ Mathematics with Applications, 2010,60 (7) : 2087- 2098.
  • 9Yang X S, Hossein G A H. Bat algorithm: A novel approach for global engineering optimization. Engineering Computations, 2012,29 (5) : 464- 483.
  • 10Zheng Y J. Water wave optimization. Computers Operations Research, 2015,55 (1) : 1 - 11.

共引文献20

同被引文献19

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部