期刊文献+

一种相似度剪枝的离群点检测算法 被引量:2

Outlier Detection Algorithm Based on Similarity Pruning
下载PDF
导出
摘要 针对现有的离群点检测算法对于不规则形状数据集和复杂分布的多维数据集检测精度较低的问题,提出了一种基于相似度剪枝的离群点检测算法.算法首先通过构造相似度矩阵的方法,计算样本点之间的相似度,通过度矩阵获取与其他样本相似度较小的样本作为离群点候选集,完成对非离群点的剪枝;然后,通过LOF算法计算离群点候选集中所有对象的局部离群因子,根据局部离群因子的大小进行判断得到最终的离群点.实验结果表明,所提出的算法可以得到较高的离群点检测精确度. In order to solve the problem that the existing outlier detection algorithms have low detection accuracy for irregular shape data sets and complex distributed multidimensional data sets, an outlier detection algorithm based on similarity pruning is proposed. Firstly, the similarity matrix construction method is used to calculate the similarity between sample points. A part of the sample points with smaller similarity to other samples is found as the outlier candidate set by the degree matrix. And then the LOF algorithm is used to calculate the local outlier factor of all the objects in the outlier candidate set,and the final outliers are obtained according to the nu- merical value of the local outlier factor. The experimental results show that the proposed algorithm can obtain high outlier detection ac- curacy.
作者 丁天一 张旻 方胜良 DING Tian-yi;ZHANG Min;FANG Sheng-liang(Electronic Engineedng Institute,Hefei 230037,Chin)
机构地区 电子工程学院
出处 《小型微型计算机系统》 CSCD 北大核心 2018年第8期1680-1684,共5页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(61171170)资助 安徽省自然科学基金项目(1408085QF115)资助 国防科技重点实验室基金项目(9140C130502140C13068)资助 总装预研基金项目(9140A22020315JB39001)资助.
关键词 离群点检测 局部离群因子 相似度矩阵 剪枝 outlier detection local outlier factor similarity matrix pruning
  • 相关文献

参考文献9

二级参考文献142

  • 1黄敏明,林柏钢.基于遗传算法的模糊聚类入侵检测研究[J].通信学报,2009,30(S2):140-145. 被引量:5
  • 2黄添强,秦小麟,叶飞跃.基于方形邻域的离群点查找新方法[J].控制与决策,2006,21(5):541-545. 被引量:16
  • 3孙焕良,鲍玉斌,于戈,赵法信,王大玲.一种基于划分的孤立点检测算法[J].软件学报,2006,17(5):1009-1016. 被引量:16
  • 4薛安荣,鞠时光,何伟华,陈伟鹤.局部离群点挖掘算法研究[J].计算机学报,2007,30(8):1455-1463. 被引量:96
  • 5Breunig M M,Kriegel H P,Ng R T,et al.LOF:Identifying density-based local outliers[C]//Proc of ACM SIGMOD Conf.New York:ACM,2000:427-438.
  • 6Tang J,Chen Z,Fu A,et al.Enhancing effectiveness of outlier detections for low-density patterns[C]//Proc of Advances in Knowledge Discovery and Data Mining 6th Pacific Asia Conf.Berlin:Springer,2002:535-548.
  • 7Papadimitirou S,Kitagawa H,Gibbons P B,et al.LOCI:Fast outlier detection using the local correlation integral[C]//Proc of the 19th Int Conf on Data Engineering.Los Alamitos:IEEE Computer Society,2003:315-326.
  • 8Sanjay C,Pei Sun.SLOM:A new measure for local spatial outliers[J].Knowledge and Information Systems,2006,9(4):412-429.
  • 9Barnett V,Lewis T.Outliers in Statistical Data[M].New York:John Wiley and Sons,1994.
  • 10Johnson T,Kwok I,Ng R T.Fast computation of 2-dimensional depth contours[C]//Proc of the 4th Int Conf on Knowledge Discovery and Data Mining (KDD'98).New York:ACM,1998:224-228.

共引文献113

同被引文献21

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部