期刊文献+

一种基于粒子滤波的时空上下文视觉跟踪算法

Visual Tracking Algorithm for Spatio-temporal Context Based on Particle Filter
下载PDF
导出
摘要 为解决时空上下文视觉跟踪算法在目标处于遮挡及复杂背景情况下容易产生跟踪漂移的问题,提出了一种基于粒子滤波的时空上下文视觉跟踪算法.通过设置实验参数,自动选择第一帧目标所在的矩形区域,在后续帧跟踪的过程中,利用Bhattacharyya系数作为判断是否遮挡的依据,当目标发生遮挡时,引入粒子滤波对目标在后续帧中位置及运动轨迹进行估计和预测,实现了目标的精确跟踪.实验结果表明,该算法不仅能够适用于光照变化、目标旋转、背景区域干扰等复杂背景下的视觉目标跟踪,并且对目标的遮挡具有鲁棒性,满足实时性要求. As visual tracking via spatio-temporal context learning easily fails to track target stably when target is in the occlusion condi- tion and complex background,a visual tracking algorithm for spatio-temporal context based on particle filter is proposed. By setting ex- perimental parameters,the rectangle area of the fast frame target is selected automatically. During following frame tracking,the Bhatta- charyya coefficient is used as a judgement criterion for occlusion. When the target is occluded,the particle filter is used to estimate and predict position and trajectory of target in the subsequent frame,and the target can be traced accurately. The experimental results show that the proposed algodthra can not only be applied to visual target tracking under complex conditions such as illumination changes,target rotation and background disturbance,but also has robustness to target occlusion and satisfies the requirements of real-time tracking.
作者 文武 伍立志 张建峰 WEN Wu;WU Li-zhi;ZHANG Jian;fenga(Chongqing University of Posts and Telecommunications New Technology Application Research Center,Chongqing 400065,China;Chongqing Information Technology Designing Co.,Ltd.,Chongqing 400065,China)
出处 《小型微型计算机系统》 CSCD 北大核心 2018年第8期1849-1854,共6页 Journal of Chinese Computer Systems
基金 重庆市研究生科研创新基金项目(CYS15166)资助
关键词 视觉跟踪 时空上下文 漂移 粒子滤波 实时性 visual tracking spatio-temporal context drift particle filter real-time
  • 相关文献

参考文献2

二级参考文献26

  • 1Babenko B, Yang M H, Belongie S. Robust object tracking with online multiple instance learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(8): 1619-1632.
  • 2Ross D A, Lim J, Lin R S, for robust visual tracking Yang M H. Incremental learning International Journal of Corn- purer Vision, 2008, 77(1-3): 125-141.
  • 3Zhang K H, Zhang L, Yang M H. Fast compressive track- ing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(10): 2002-2015.
  • 4Kwon J, Lee K M. Visual tracking decomposition. In: Pro- ceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). San Francisco, CA, USA: IEEE, 2010. 1269-1276.
  • 5Kalal Z, Mikolajczyk K, Matas J. Tracking-learning- detection. IEEE Transactions on Pattern Analysis and Ma- chine Intelligence, 2012, 34(7): 1409-1422.
  • 6Zhou X Z, Lu Y, Lu J W, Zhou J. Abrupt motion tracking via intensively adaptive Markov chain Monte Carlo sam- piing. IEEE Transactions on Image Processing, 2012, 21(2): 789-801.
  • 7Zhou T F, Lu Y, Di H J. Nearest neighbor field driven stochastic sampling for abrupt motion tracking. In: Pro- ceedings of the 2014 International Conference on Multime- dia and Expo (ICME). Chengdu China: IEEE, 2014. 1-6.
  • 8Grabner H, Matas J, Van Gool L, Cattin P. Tracking the in- visible: learning where the object might be. In: Proceedings of the 2010 IEEE Conference on Computer Vision and Pat- tern Recognition (CVPR). San Francisco, CA, USA: IEEE, 2010. 1285-1292.
  • 9Dinh T B, Vo N, Medioni G. Context tracker: exploring supporters and distracters in unconstrained environments. In: Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Colorado Springs, CO, USA: IEEE, 2011. 1177-1184.
  • 10Wen L Y, Cai Z W, Zhen L, Dong Y, Li S Z. Online spatio- temporal structural context learning for visual tracking. In: Proceedings of the 2012 European Conference on Computer Vision (ECCV). Florence, Italy: Springer, 2012. 716-729.

共引文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部