期刊文献+

m-LNQD列部分和的收敛性

Convergence of the partial sums for sequence of m-LNQD random variable
下载PDF
导出
摘要 文章借助矩不等式和截尾方法,研究了m-LNQD(m-Linearly Negative Quadrant Dependent)列部分和的完全收敛性,将独立列的相关极限定理推广到了m-LNQD列的情形,进一步改进了文献[7]中定理3.3的结论. By the mean's moment inequality and truncated method, the paper gives the complete convergence on the m-Linearly Negative Quadrant Dependent(m-LNQD)random variables, which generalizes the corresponding limit results for independent random variable on m-LNQD random variables and extends the well-known results.
作者 王宽程 WANG Kuan-cheng(Minnan University of Science and Technology,Quanzhou,Fujian 362700,Chin)
出处 《宁德师范学院学报(自然科学版)》 2018年第2期118-120,共3页 Journal of Ningde Normal University(Natural Science)
基金 福建省中青年教师教育科研项目(JAT170739)
关键词 m-LNQD列 矩不等式 完全收敛性 m-LNQD sequences mean's moment inequality complete convergence
  • 相关文献

参考文献2

二级参考文献21

  • 1吴群英,王远清,伍艳春.NA阵列行和最大值的若干极限定理[J].应用概率统计,2006,22(1):56-62. 被引量:15
  • 2Lehmann E L. Some Concepts of Dependence. Ann. Math. Statist., 1966, 37(5): 1137-1153.
  • 3Newman C M. Asymptotic Independence and Limit Theorems for Positively and Negatively Dependent Random Variables. In: Tong, Y.L. (Ed.) Inequalities in Statistics and Probability. IMS Lecture Notes Monogr. Ser., 1984, 5:127-140 (Inst. Math. Statist., Hayward, CA).
  • 4Joag-Dev K, Proschan F. Negative Association of Random Variables with Applications. Ann. Statist., 1983, 11(1): 286-295.
  • 5Wang J F, Zhang L X. A Berry-Esseen Theorem for Weakly Negatively Dependent Random Variables and its Applications. Acta Math. Hungar., 2006, 110(4): 293-308.
  • 6Ko M H, Choi Y K, Choi Y S. Exponential Probability Inequality for Linearly Negative Quadrant Dependent Random Variables. Commun. Korean Math. Soc., 2007, 22(1): 137-143.
  • 7Ko M H, Ryu D H, Kim T S. Limiting Behaviors of Weighted Sums for Linearly Negative Quadrant Dependent Random Variables. Taiwan Residents J. Math., 2007, 11(2): 511-522.
  • 8Wang X J, Hu S H, Yang W Z, Li X Q. Exponential Inequalities and Complete Convergence for a LNQD Sequence. J. Korean Statist. Soc., 2010, 39(4): 555-564.
  • 9Chandra T K. Uniform Integrability in the Cesro Sense and the Weak Law of Large Numbers. Sankhy Set. A, 1989, 51(3): 309-317.
  • 10Wu Y F, Guan M. Mean Convergence Theorems and Weak Laws of Large Numbers for Weighted Sums of Dependent Random Variables. J. Math. Anal. Appl., 2011, 377(2): 613-623.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部