期刊文献+

基于APSO算法的双容水箱PID参数优化仿真 被引量:12

Optimization of PID Control of Liquid Level Control of Double-Tank Based on Improved Particle Swarm Optimization Algorithm
下载PDF
导出
摘要 针对双容水箱液位控制系统中PID参数整定困难的问题,采用一种自适应的粒子群(APSO)算法来优化双容水箱液位控制系统中的PID参数。上述算法将PID的三个参数Kp、Ki、Kd作为粒子的三个维度,采用目标函数值自适应的惯性权重系数调整策略,结合德普施双容水箱液位控制系统进行仿真。通过仿真得到:APSO算法比常规PSO算法具有更好的控制品质,即超调量明显减少、调整过程稳定。实验结果表明,APSO算法能够在液位控制中获得良好的动态性能,具有重要的实用价值。 An adaptive particle swarm optimization (APSO) algorithm was used to optimize the PID parameters in the liquid level control system of the double tank for the problem of difficulty in setting PID parameters in the liquid level control of the double tank. Three parameters kp, ki, kd of the PID were used the as the three dimensions of the particle, and the adaptive function of the objective function was used to adjust the inertia weight coefficient adjustment strategy, and the Depushi double tank level control system was combined for the simulation experiment. The simulation results show that the APSO algorithm has better control quality than the conventional PSO algorithm, that is, the overshoot is obviously reduced and the adjustment process is stable. The experimental results show that the APSO algorithm can obtain good dynamic performance in liquid level control and has important practical value.
作者 宋栓军 陈凯凯 张华威 SONG Shuan - jun;CHEN Kai - kai;ZHANG Hua - wei(School of Mechanical and Electrical Engineering,Xi'an Polytechnic University,Xi'an Shanxi 710048,China)
出处 《计算机仿真》 北大核心 2018年第8期261-265,共5页 Computer Simulation
基金 国家自然基金(71271170) 陕西省教育厅科研基金项目(15JK1311) 中国纺织工业联合会科技指导性计划(2016090) 西安工程大学研究生质量工程项目(15yzl05)
关键词 液位控制 自适应粒子群算法 参数 惯性权重 Level control Adaptive particle swarm optimization(APSO) Parameter Inertia weight
  • 相关文献

参考文献14

二级参考文献125

共引文献165

同被引文献102

引证文献12

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部