期刊文献+

复合高斯背景下基于最优控制参数的自适应检测器 被引量:2

Adaptive detector based on optimal control parameter in compound-Gaussian background
原文传递
导出
摘要 在复合高斯杂波背景下,针对检测器α-AMF利用采样协方差矩阵(SCM)估计方法不具备完全自适应性以及控制参数α不匹配的问题,首先,结合归一化采样协方差矩阵(NSCM)估计方法,提出α-AMF的SCM-NSCM组合估计方法;然后,拟合出检测器最优控制参数的经验公式,经验公式符合数值结果;最后,将α-AMF与改进的α-AMF的恒虚警率特性和检测性能进行对比分析.研究结果表明,在复合高斯环境下,基于SCM-NSCM估计的α-AMF受杂波尖峰的影响小于对比检测器,对杂波归一化协方差矩阵结构的变化具有很强的鲁棒性;在严重拖尾的非高斯环境中,所提出的自适应检测器性能明显优于对比检测器. This paper addresses the problem that the detector α-AMF is not fully adaptive and the control parameter α is mismatched when using the sample covariance matrix(SCM) estimation in the compound-Gaussian background. Firstly,combined with the normalized sample covariance matrix(NSCM) estimation, a SCM-NSCM combination estimation method for the α-AMF is proposed. Then, the empirical formula of the optimal control parameter is simulated and it is consistent with the numerical results. Finally, the constant false alarm rate(CFAR) characteristics and the performance of the detectors are analyzed. The results show that the α-AMF based on SCM-NSCM estimation, which is less affected by the spikiness of clutter than the comparative detector, has strong robustness to the variation of the normalized covariance matrix of the clutters in the compound-Gaussian environment, and it exhibits better detection performance than the comparative detector in heavy-tailed clutter.
作者 王智 简涛 何友 WANG Zhi;JIAN Tao;HE You(Research Institute of Information Fusion,Naval Aviation University,Yantai 264001,China)
出处 《控制与决策》 EI CSCD 北大核心 2018年第8期1532-1536,共5页 Control and Decision
基金 国家自然科学基金项目(61471379 61790551 61102166) 国防科技基金项目(2012028) 装备发展部"十三五"预研项目(41413060101) 泰山学者工程专项经费项目
关键词 复合高斯背景 自适应检测 恒虚警率 协方差矩阵估计 控制参数 球不变随机向量 compound-Gaussian background adaptive detection constant false alarm rate: covariance matrix estimation control parameter spherically invariant random vector
  • 相关文献

参考文献2

二级参考文献37

  • 1Kelly E J. An adaptive detection algorithm[J]. IEEE Transactions on Aerospace and Electronic Systems, 1986, 22(1): 115-127.
  • 2Yao K. A representation theorem and its applications to spherically invariant random processes[J], IEEE Transactions on Information Theory, 1973, 19(5): 600-608.
  • 3Jian T, He Y, Su F, et al. Performance characterization of two adaptive range-spread target detectors for unwanted signal[C]//Proceedings of the 9th International Conference on Signal Processing. 2008, 3:2326-2329.
  • 4Conte E, Lops M, Ricci G. Asymptotically optimum radar detection in compound-Gaussian clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 1995, 31 (2): 617-625.
  • 5Conte E, de Maio A, Ricci G. Covariance matrix estimation for adaptive CFAR detection in compound Gaussian clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2002, 38(2): 415-426.
  • 6Conte E, de Maio A, Ricci G. Recursive estimation of the covariance matrix of a compound-Gaussian process and its application to adaptive CFAR[J]. IEEE Transactions on Signal Processing, 2002, 50(8): 1908-1915.
  • 7Haykin S, Steinhardt A. Adaptive radar detection and estimation[M]. New York: Wiley, 1992.
  • 8Billingsley J B, Farina A, Gini F, et al. Statistical analyses of measured radar ground clutter data [J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(2): 579-593.
  • 9Ward K D, Baker C J, Watts S. Maritime surveillance radar -Part 1 : Radar scattering from the ocean surface[J], IEEE Proceedings, Part F: Radar and Signal Processing 1990, 137(2): 51-72.
  • 10Van Trees H L.检测、估计和调制理论--卷Ⅰ检测、估计和线性调制理论[M].毛士艺,周荫清,张其善,译.北京:电子工业出版社,2007.

共引文献14

同被引文献32

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部