摘要
令G为简单图.sα(G)等于图G的无符号拉普拉斯特征值α次幂的总和,其中α为实数且α≠0,1.本文我们得到一些连通图的sα(G)的新的界,并给出了正则图的Mycielskian图、正则图及半正则二部图的Double图这些特殊图类的sα(G)的新的界.由这些结论的特殊情况可得到相应图的关联能量的界.
Let G be a simple graph. The graph invariant sa(G) is equal to the sum of ath powers of the signless Laplacian eigenvalues of G, for any real a(a ≠ 0,1). In this paper, we obtain some new bounds for sα(G) of connected graphs. Moreover, we also give some new bounds for sα(G) of the Mycielskian of a regular graph and the Double graph of regular and semi-regular bipartite graphs. These results yield, as immediate special cases, bounds for the incidence energy.
出处
《应用数学学报》
CSCD
北大核心
2018年第4期561-576,共16页
Acta Mathematicae Applicatae Sinica
基金
国家自然科学基金(11301217,11571139)
福建省自然科学基金(2018J01419)资助项目